Triplet Network for One-Shot Raman Spectrum Recognition.

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Applied Spectroscopy Pub Date : 2024-12-09 DOI:10.1177/00037028241297180
Bo Wang, Pu Zhang, Wei Zhao, Wenzhen Ren, Xiangping Zhu, Ying Jiao, Qi Liao, Zhen Yao
{"title":"Triplet Network for One-Shot Raman Spectrum Recognition.","authors":"Bo Wang, Pu Zhang, Wei Zhao, Wenzhen Ren, Xiangping Zhu, Ying Jiao, Qi Liao, Zhen Yao","doi":"10.1177/00037028241297180","DOIUrl":null,"url":null,"abstract":"<p><p>Raman spectroscopy is widely used for material detection due to its specificity, but its application to spectral recognition often faces limitations due to insufficient training data, unlike fields such as image recognition. Traditional machine learning or basic neural networks are commonly used, but they have limited ability to achieve high precision. We have proposed a novel approach that combines the Triplet network (TN) and K-nearest neighbor (KNN) techniques to address this issue. TN maps the Raman spectral sequences to a 128-dimensional Euclidean space to extract features, enabling the features in the new space to more accurately represent the similarities or differences between spectra, and then utilizes the KNN algorithm to perform classification tasks in this feature space. Our method exhibits superior performance in recognizing unknown Raman spectra with minimal training samples per class. We employed a handheld Raman spectrometer with an excitation wavelength of 785 nm to collect the Raman spectra of 36 samples, including 28 safe materials and eight hazardous materials. Using only one spectrum as a support set for each category, the hazardous samples were successfully distinguished from the safe samples with an accuracy of 99.6%. Additionally, our model offers adaptability without requiring exhaustive retraining when adding new prediction classes. In situations with high background fluorescence, the TN performs better in measuring the distance between spectra of the same class than traditional distance measurement methods.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241297180"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241297180","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Raman spectroscopy is widely used for material detection due to its specificity, but its application to spectral recognition often faces limitations due to insufficient training data, unlike fields such as image recognition. Traditional machine learning or basic neural networks are commonly used, but they have limited ability to achieve high precision. We have proposed a novel approach that combines the Triplet network (TN) and K-nearest neighbor (KNN) techniques to address this issue. TN maps the Raman spectral sequences to a 128-dimensional Euclidean space to extract features, enabling the features in the new space to more accurately represent the similarities or differences between spectra, and then utilizes the KNN algorithm to perform classification tasks in this feature space. Our method exhibits superior performance in recognizing unknown Raman spectra with minimal training samples per class. We employed a handheld Raman spectrometer with an excitation wavelength of 785 nm to collect the Raman spectra of 36 samples, including 28 safe materials and eight hazardous materials. Using only one spectrum as a support set for each category, the hazardous samples were successfully distinguished from the safe samples with an accuracy of 99.6%. Additionally, our model offers adaptability without requiring exhaustive retraining when adding new prediction classes. In situations with high background fluorescence, the TN performs better in measuring the distance between spectra of the same class than traditional distance measurement methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
期刊最新文献
Dual-Gas Sensor Employing Wavelength-Stabilized Tunable Diode Laser Absorption Spectroscopy and H-Infinity Filtering Algorithm. Near Real-Time Measurement of Airborne Carbon Nanotubes with Metals Using Raman-Spark Emission Spectroscopy. Cavity Ring-Down Spectroscopy Performance and Procedures for High-Throughput δ18O and δ2H Measurement in Water Using "Express" Mode. Focusing Effects on Laser-Induced Plasma Parameters: Applications to a Graphite Target Under Martian Atmospheric Conditions. Acute Leukemia Diagnosis Through AI-Enhanced Attenuated Total Reflection Fourier Transform Infrared Spectroscopy of Peripheral Blood Smears.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1