Induction of Innate Immune Memory in LPS-Primed Microglial Cells by Water-Soluble Chitosan.

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BioMed Research International Pub Date : 2024-11-30 eCollection Date: 2024-01-01 DOI:10.1155/bmri/8027006
Vo Thuy Anh Thu, Thi Xoan Hoang, Jae Kweon Park, Jae Young Kim
{"title":"Induction of Innate Immune Memory in LPS-Primed Microglial Cells by Water-Soluble Chitosan.","authors":"Vo Thuy Anh Thu, Thi Xoan Hoang, Jae Kweon Park, Jae Young Kim","doi":"10.1155/bmri/8027006","DOIUrl":null,"url":null,"abstract":"<p><p>Innate immune memory or trained immunity refers to a long-lasting response of the innate immune cells against repeated exposure to the homogenous or heterogenous infectious agent. The trained immunity is induced through epigenetic modification and is characterized by the change of both intracellular immunological signaling and cellular metabolism. Recently, different groups have tried to establish protocols to generate trained innate immune cells. However, the molecular basis of innate memory induction remains poorly understood. Here, we evaluated the impact of water-soluble chitosan on the innate immune memory induction in microglial cells primed with LPS. The trained-immune response was accessed by measuring proinflammatory markers, metabolic change, and epigenetic modification. We showed that the stimulation/restimulation with LPS only caused a robust reduction of iNOS, and proinflammatory cytokines, indicating induced immune tolerance. In contrast, the treatment of chitosan induces long-lasting memory microglial cells accompanied by a high level of iNOS, increased lactate production, induced epigenetic modification, and the upregulation of proinflammatory cytokines upon further exposure to the same stimulus. These findings suggest that chitosan induces microglial-trained immunity by targeting distinct epigenetic and metabolic pathways; therefore, chitosan treatment may provide a novel approach for targeting innate immunity towards a memory-like response in an in vitro model.</p>","PeriodicalId":9007,"journal":{"name":"BioMed Research International","volume":"2024 ","pages":"8027006"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628173/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMed Research International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/bmri/8027006","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Innate immune memory or trained immunity refers to a long-lasting response of the innate immune cells against repeated exposure to the homogenous or heterogenous infectious agent. The trained immunity is induced through epigenetic modification and is characterized by the change of both intracellular immunological signaling and cellular metabolism. Recently, different groups have tried to establish protocols to generate trained innate immune cells. However, the molecular basis of innate memory induction remains poorly understood. Here, we evaluated the impact of water-soluble chitosan on the innate immune memory induction in microglial cells primed with LPS. The trained-immune response was accessed by measuring proinflammatory markers, metabolic change, and epigenetic modification. We showed that the stimulation/restimulation with LPS only caused a robust reduction of iNOS, and proinflammatory cytokines, indicating induced immune tolerance. In contrast, the treatment of chitosan induces long-lasting memory microglial cells accompanied by a high level of iNOS, increased lactate production, induced epigenetic modification, and the upregulation of proinflammatory cytokines upon further exposure to the same stimulus. These findings suggest that chitosan induces microglial-trained immunity by targeting distinct epigenetic and metabolic pathways; therefore, chitosan treatment may provide a novel approach for targeting innate immunity towards a memory-like response in an in vitro model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BioMed Research International
BioMed Research International BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
6.70
自引率
0.00%
发文量
1942
审稿时长
19 weeks
期刊介绍: BioMed Research International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies covering a wide range of subjects in life sciences and medicine. The journal is divided into 55 subject areas.
期刊最新文献
Corrigendum to "Antimicrobial and Anti-Biofilm Activities of Thymus fallax Essential Oil against Oral Pathogens". Exploring the Impact of Biological Agents on Protecting Against Experimental Periodontitis: A Systematic Review of Animal-Based Studies. Induction of Innate Immune Memory in LPS-Primed Microglial Cells by Water-Soluble Chitosan. Indigenous Knowledge and Quantitative Analysis of Medicinal Plants Used to Remedy Respiratory Tract Disorders in Mid-Western Tanzania. Comparison of Gut Microbiomes Between Neonates Born by Cesarean Section and Vaginal Delivery: Prospective Observational Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1