VME-EFD : A novel framework to eliminate the Electrooculogram artifact from single-channel EEGs.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2024-12-20 DOI:10.1088/2057-1976/ad9bb6
Sayedu Khasim Noorbasha, Arun Kumar
{"title":"VME-EFD : A novel framework to eliminate the Electrooculogram artifact from single-channel EEGs.","authors":"Sayedu Khasim Noorbasha, Arun Kumar","doi":"10.1088/2057-1976/ad9bb6","DOIUrl":null,"url":null,"abstract":"<p><p>The diagnosis of neurological disorders often involves analyzing EEG data, which can be contaminated by artifacts from eye movements or blinking (EOG). To improve the accuracy of EEG-based analysis, we propose a novel framework, VME-EFD, which combines Variational Mode Extraction (VME) and Empirical Fourier Decomposition (EFD) for effective EOG artifact removal. In this approach, the EEG signal is first decomposed by VME into two segments: the desired EEG signal and the EOG artifact. The EOG component is further processed by EFD, where decomposition levels are analyzed based on energy and skewness. The level with the highest energy and skewness, corresponding to the artifact, is discarded, while the remaining levels are reintegrated with the desired EEG. Simulations on both synthetic and real EEG datasets demonstrate that VME-EFD outperforms existing methods, with lower RRMSE (0.1358 versus 0.1557, 0.1823, 0.2079, 0.2748), lower ΔPSD in the<i>α</i>band (0.10 ± 0.01 and 0.17 ± 0.04 versus 0.89 ± 0.91 and 0.22 ± 0.19, 1.32 ± 0.23 and 1.10 ± 0.07, 2.86 ± 1.30 and 1.19 ± 0.07, 3.96 ± 0.56 and 2.42 ± 2.48), and higher correlation coefficient (CC: 0.9732 versus 0.9695, 0.9514, 0.8994, 0.8730). The framework effectively removes EOG artifacts and preserves critical EEG features, particularly in the<i>α</i>band, making it highly suitable for brain-computer interface (BCI) applications.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad9bb6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The diagnosis of neurological disorders often involves analyzing EEG data, which can be contaminated by artifacts from eye movements or blinking (EOG). To improve the accuracy of EEG-based analysis, we propose a novel framework, VME-EFD, which combines Variational Mode Extraction (VME) and Empirical Fourier Decomposition (EFD) for effective EOG artifact removal. In this approach, the EEG signal is first decomposed by VME into two segments: the desired EEG signal and the EOG artifact. The EOG component is further processed by EFD, where decomposition levels are analyzed based on energy and skewness. The level with the highest energy and skewness, corresponding to the artifact, is discarded, while the remaining levels are reintegrated with the desired EEG. Simulations on both synthetic and real EEG datasets demonstrate that VME-EFD outperforms existing methods, with lower RRMSE (0.1358 versus 0.1557, 0.1823, 0.2079, 0.2748), lower ΔPSD in theαband (0.10 ± 0.01 and 0.17 ± 0.04 versus 0.89 ± 0.91 and 0.22 ± 0.19, 1.32 ± 0.23 and 1.10 ± 0.07, 2.86 ± 1.30 and 1.19 ± 0.07, 3.96 ± 0.56 and 2.42 ± 2.48), and higher correlation coefficient (CC: 0.9732 versus 0.9695, 0.9514, 0.8994, 0.8730). The framework effectively removes EOG artifacts and preserves critical EEG features, particularly in theαband, making it highly suitable for brain-computer interface (BCI) applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VME-EFD:一种消除单通道脑电图眼电信号伪影的新框架。
神经系统疾病的诊断通常涉及分析脑电图数据,这些数据可能受到眼动或眨眼(EOG)的伪影的污染。为了提高基于脑电图分析的准确性,我们提出了一种新的框架VME-EFD,它结合了变分模提取(VME)和经验傅里叶分解(EFD)来有效地去除脑电图伪影。在该方法中,首先用VME将脑电信号分解为两个部分:期望的脑电信号和脑电信号伪影。EOG成分通过EFD进一步处理,其中根据能量和偏度分析分解水平。在合成和真实EEG数据集上的仿真表明,ve - efd优于现有方法,RRMSE较低(0.1358 vs. 0.1557, 0.1823, 0.2079, 0.2748), α波段的ΔPSD较低(0.10±0.01和0.17±0.04 vs. 0.89±0.91和0.22±0.19,1.32±0.23和1.10±0.07,2.86±1.30和1.19±0.07,3.96±0.56和2.42±2.48)。相关系数较高(CC: 0.9732 vs. 0.9695, 0.9514, 0.8994, 0.8730)。该框架有效地去除了EEG伪影,并保留了关键的EEG特征,特别是在α波段,使其非常适合脑机接口(BCI)应用。 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Biological cell response to electric field: a review of equivalent circuit models and future challenges. A novel hollow-core antiresonant fiber-based biosensor for blood component detection in the THz regime. Simulations of the potential for diffraction enhanced imaging at 8 kev using polycapillary optics. Determining event-related desynchronization onset latency of foot dorsiflexion in people with multiple sclerosis using the cluster depth tests. Automated detection of traumatic bleeding in CT images using 3D U-Net# and multi-organ segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1