The expression of DNAJB9 in normal human astrocytes is more sensitive to nanographene oxide than in glioblastoma cells.

Q3 Medicine Endocrine regulations Pub Date : 2024-12-09 Print Date: 2024-01-01 DOI:10.2478/enr-2024-0029
Oleksandr Minchenko, Yuliia V Kulish, Yuliia M Viletska, Olena O Khita, Olha V Rudnytska, Halyna E Kozynkevych, Dmytro O Minchenko
{"title":"The expression of DNAJB9 in normal human astrocytes is more sensitive to nanographene oxide than in glioblastoma cells.","authors":"Oleksandr Minchenko, Yuliia V Kulish, Yuliia M Viletska, Olena O Khita, Olha V Rudnytska, Halyna E Kozynkevych, Dmytro O Minchenko","doi":"10.2478/enr-2024-0029","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective.</b> Nanographene oxide (nGO) nanoparticles (NPs) have unique properties and are widely used in various fields, including biomedicine. These NPs, however, also exhibit toxic ef-fects and therefore, the understanding of the molecular mechanism of nGO toxicity is very im-portant mainly for the nanomedicine, especially the cancer therapy. This study aimed to examine the impact of nGO NPs on the expression of genes associated with endoplasmic reticulum (ER) stress, proliferation, and cancerogenesis in both normal human astrocytes and U87MG glioblas-toma cells. <b>Methods.</b> Normal human astrocytes line NHA/TS and U87MG glioblastoma cells stable trans-fected by empty vector or dnERN1 (dominant-negative construct of ERN1) were exposed to low doses of nGO (1 and 4 ng/ml) for 24 h. RNA was extracted from the cells and used for cDNA syn-thesis. The expression levels of DNAJB9, EDEM1, DDIT3, ATF3, ATF4, TOB1, and IDH2 mRNAs were measured by quantitative polymerase chain reaction and normalized to ACTB mRNA. <b>Results.</b> We showed that treatment of normal astrocytes and glioblastoma cells by relatively small doses of nGO (1 and 4 ng/ml for 24 h) affected the expression level of DNAJB9, EDEM1, DDIT3, ATF3, ATF4, TOB1, and IDH2 mRNAs, but the sensitivity of all studied mRNA expres-sions to these NPs was significantly higher in normal astrocytes than in glioblastoma cells. The impact of nGO on these gene expressions is mediated by ER stress because ERN1 knockdown sup-presses the effect of these nanoparticles in glioblastoma cells. <b>Conclusion.</b> The data obtained demonstrate that the low doses of nGO disturbed the functional integrity of the genome preferentially through ER stress signaling and exhibit a more pronounced genotoxic effect in the normal astrocytes than the glioblastoma cells.</p>","PeriodicalId":11650,"journal":{"name":"Endocrine regulations","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine regulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/enr-2024-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective. Nanographene oxide (nGO) nanoparticles (NPs) have unique properties and are widely used in various fields, including biomedicine. These NPs, however, also exhibit toxic ef-fects and therefore, the understanding of the molecular mechanism of nGO toxicity is very im-portant mainly for the nanomedicine, especially the cancer therapy. This study aimed to examine the impact of nGO NPs on the expression of genes associated with endoplasmic reticulum (ER) stress, proliferation, and cancerogenesis in both normal human astrocytes and U87MG glioblas-toma cells. Methods. Normal human astrocytes line NHA/TS and U87MG glioblastoma cells stable trans-fected by empty vector or dnERN1 (dominant-negative construct of ERN1) were exposed to low doses of nGO (1 and 4 ng/ml) for 24 h. RNA was extracted from the cells and used for cDNA syn-thesis. The expression levels of DNAJB9, EDEM1, DDIT3, ATF3, ATF4, TOB1, and IDH2 mRNAs were measured by quantitative polymerase chain reaction and normalized to ACTB mRNA. Results. We showed that treatment of normal astrocytes and glioblastoma cells by relatively small doses of nGO (1 and 4 ng/ml for 24 h) affected the expression level of DNAJB9, EDEM1, DDIT3, ATF3, ATF4, TOB1, and IDH2 mRNAs, but the sensitivity of all studied mRNA expres-sions to these NPs was significantly higher in normal astrocytes than in glioblastoma cells. The impact of nGO on these gene expressions is mediated by ER stress because ERN1 knockdown sup-presses the effect of these nanoparticles in glioblastoma cells. Conclusion. The data obtained demonstrate that the low doses of nGO disturbed the functional integrity of the genome preferentially through ER stress signaling and exhibit a more pronounced genotoxic effect in the normal astrocytes than the glioblastoma cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与胶质母细胞瘤细胞相比,正常人星形胶质细胞中 DNAJB9 的表达对纳米氧化物更敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Endocrine regulations
Endocrine regulations Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.70
自引率
0.00%
发文量
33
审稿时长
8 weeks
期刊最新文献
The expression of DNAJB9 in normal human astrocytes is more sensitive to nanographene oxide than in glioblastoma cells. The relationship between breast cancer and thyroid autoimmune disorders in southeast Iran: A case-control study. The relationship between serum thyroid hormone levels and symptoms severity in young children with autism. An unusual case of severe hyperbilirubinemia and thyrotoxicosis. Hormonal biomarkers and preterm birth: insights from a study of pregnant women in Lahore, Pakistan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1