Effect of Gamma Irradiation on Depolymerization and Property Changes of Gum Tragacanth.

IF 3 Q3 MATERIALS SCIENCE, BIOMATERIALS International Journal of Biomaterials Pub Date : 2024-11-30 eCollection Date: 2024-01-01 DOI:10.1155/ijbm/8875341
Boontiwa Ninchan, Parimitta Chauywongyart, Teerawat Utapong, Nuatawan Thamrongsiripak
{"title":"Effect of Gamma Irradiation on Depolymerization and Property Changes of Gum Tragacanth.","authors":"Boontiwa Ninchan, Parimitta Chauywongyart, Teerawat Utapong, Nuatawan Thamrongsiripak","doi":"10.1155/ijbm/8875341","DOIUrl":null,"url":null,"abstract":"<p><p>High-energy nonthermal processes (irradiation) are an interesting technique for depolymerization. Gum tragacanth (GT) is a heteropolysaccharide composed of various sugars that are beneficial in the food and pharmaceutical industries. This study investigated the effects of different gamma irradiation doses (2.5, 5, 10, 20, 100, 500, 1,000, and 2000 kGy) on GT properties, considering both structural and physicochemical changes. The results confirmed that gamma irradiation influenced depolymerization with increases in monosaccharides (L-arabinose, D-galactose, D-glucose, D-xylose, L-fucose, L-rhamnose) and the percentage of degradation. Fourier transform infrared (FTIR) spectroscopy analysis indicated that structural changes occurred, with more free O-H and C-O bonding, including the carboxylic group (COOH) in the degraded molecules after irradiation. The changes in physicochemical properties were lower viscosity and a color change under gamma irradiation. The property changes in the GT were clearly related to an increased dose of gamma rays. In summary, there was comprehensive GT degradation following exposure using different increasing doses of gamma radiation, with some concomitant property changes in the GT.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"8875341"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625087/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijbm/8875341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

High-energy nonthermal processes (irradiation) are an interesting technique for depolymerization. Gum tragacanth (GT) is a heteropolysaccharide composed of various sugars that are beneficial in the food and pharmaceutical industries. This study investigated the effects of different gamma irradiation doses (2.5, 5, 10, 20, 100, 500, 1,000, and 2000 kGy) on GT properties, considering both structural and physicochemical changes. The results confirmed that gamma irradiation influenced depolymerization with increases in monosaccharides (L-arabinose, D-galactose, D-glucose, D-xylose, L-fucose, L-rhamnose) and the percentage of degradation. Fourier transform infrared (FTIR) spectroscopy analysis indicated that structural changes occurred, with more free O-H and C-O bonding, including the carboxylic group (COOH) in the degraded molecules after irradiation. The changes in physicochemical properties were lower viscosity and a color change under gamma irradiation. The property changes in the GT were clearly related to an increased dose of gamma rays. In summary, there was comprehensive GT degradation following exposure using different increasing doses of gamma radiation, with some concomitant property changes in the GT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biomaterials
International Journal of Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
4.30
自引率
3.20%
发文量
50
审稿时长
21 weeks
期刊最新文献
Effect of Gamma Irradiation on Depolymerization and Property Changes of Gum Tragacanth. Application of Titanium Mesh in the Early Treatment of Flail Chest. Synthesis of Calcium Phosphate by Microwave Hydrothermal Method: Physicochemical and Morphological Characterization. Isolation of B Cells Using Silane-Coated Magnetic Nanoparticles. Evaluation of Microleakage of Orthograde Root-Filling Materials in Immature Permanent Teeth: An In Vitro Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1