Introduction: The absence of a barrier in an open root apex makes endodontic treatment challenging as root-filling material can easily reach the surrounding tissue. The aim of the study was to compare the apical microleakage associated with mineral trioxide aggregate (MTA), biodentine, custom-made gutta-percha with MTA plus and custom-made gutta-percha with Adseal in immature permanent teeth by dye penetration method. Methods: Apical 2 mm of 60 single-rooted mandibular premolar teeth was resected to create divergent open apices and 10 teeth each were filled with Biodentine plug, MTA plug, custom-made gutta-percha with MTA plus sealer and custom-made gutta-percha with Adseal sealer. Ten teeth each acted as positive and negative controls. All the samples were stored at 37°C at 100% humidity for 5 weeks and then immersed in 2% Rhodamine B dye for 24 h. Transverse sectioning was done apically at 1 mm and 3 mm to evaluate dye penetration under a fluorescence microscope using ImageJ software. Results: There was a significantly greater microleakage at 1 mm cross section compared to 3 mm (p < 0.0001). At 1 mm cross section, the apical microleakage was the highest for the MTA plug with a mean leakage percentage of 48.08 ± 16.38, a mean depth of leakage of 0.46 ± 0.10 mm and a mean area of leakage of 1.35 ± 0.74 mm2, compared to other groups, and the difference was statistically significant. However, at a 3 mm cross section, MTA plus sealer with gutta-percha demonstrated the highest mean leakage percentage (25.01 ± 7.77) compared to other groups and the difference was statistically significant (p = 0.03). Conclusion: It can be concluded that the 3-mm-thick apical plug provided better sealing of the open apex compared to the 1 mm apical plug and there was no significant difference in microleakage among the Biodentine plug, MTA plug and Adseal sealer with gutta-percha plug at 3 mm cross section.
{"title":"Evaluation of Microleakage of Orthograde Root-Filling Materials in Immature Permanent Teeth: An In Vitro Study.","authors":"Upma Das, Vanita Gautam, Snigdha Shubham, Shristi Raut","doi":"10.1155/2024/8867854","DOIUrl":"10.1155/2024/8867854","url":null,"abstract":"<p><p><b>Introduction:</b> The absence of a barrier in an open root apex makes endodontic treatment challenging as root-filling material can easily reach the surrounding tissue. The aim of the study was to compare the apical microleakage associated with mineral trioxide aggregate (MTA), biodentine, custom-made gutta-percha with MTA plus and custom-made gutta-percha with Adseal in immature permanent teeth by dye penetration method. <b>Methods:</b> Apical 2 mm of 60 single-rooted mandibular premolar teeth was resected to create divergent open apices and 10 teeth each were filled with Biodentine plug, MTA plug, custom-made gutta-percha with MTA plus sealer and custom-made gutta-percha with Adseal sealer. Ten teeth each acted as positive and negative controls. All the samples were stored at 37°C at 100% humidity for 5 weeks and then immersed in 2% Rhodamine B dye for 24 h. Transverse sectioning was done apically at 1 mm and 3 mm to evaluate dye penetration under a fluorescence microscope using ImageJ software. <b>Results:</b> There was a significantly greater microleakage at 1 mm cross section compared to 3 mm (<i>p</i> < 0.0001). At 1 mm cross section, the apical microleakage was the highest for the MTA plug with a mean leakage percentage of 48.08 ± 16.38, a mean depth of leakage of 0.46 ± 0.10 mm and a mean area of leakage of 1.35 ± 0.74 mm<sup>2</sup>, compared to other groups, and the difference was statistically significant. However, at a 3 mm cross section, MTA plus sealer with gutta-percha demonstrated the highest mean leakage percentage (25.01 ± 7.77) compared to other groups and the difference was statistically significant (<i>p</i> = 0.03). <b>Conclusion:</b> It can be concluded that the 3-mm-thick apical plug provided better sealing of the open apex compared to the 1 mm apical plug and there was no significant difference in microleakage among the Biodentine plug, MTA plug and Adseal sealer with gutta-percha plug at 3 mm cross section.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537741/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21eCollection Date: 2024-01-01DOI: 10.1155/2024/1710628
Bontu Teshome, Berhanu Assefa, Kenatu Angassa
Biomass waste energy recovery is a significant method for recycling energy from waste and capturing it for use in renewable energy sources. The abundance of brewing byproducts, such as brewery spent grain (BSG) and brewery wastewater sludge (BWWS), as well as their high carbon concentrations gives these wastes energy potential. With 20% molasses utilized as a binding agent to maximize the high caloric value of the briquette, this study sought to examine the quality of mixed briquettes made from BSG and BWWS. In order to make composite briquettes with a maximum caloric content of 19.94 MJ/kg, the ideal conditions were chosen, which included a temperature of 350°C, a production period of 60 min, and a 75% BSG mixing ratio. It can be compared to sawdust briquettes, which have a calorific value of 22.88 MJ/kg, by looking at the calorific value of densified with pressure 100 bar for mixed carbonized briquettes vs mixed noncarbonized briquettes (21.13 MJ/kg). The value of R2 was 0.9607 and indicated that 96.07% of the total validation in the calorific value correlation between experimental and predicted values. The finding of the study showed that the efficiency of the quadratic model in fitting the data would be higher under the conditions of the experiment. Based on ISO 17225-6 fuel quality classes and specifications for graded nonwoody pellets, the study concluded that using BSG and BWWS as alternative energy sources meets those requirements.
{"title":"Production of Composite Briquette Fuel from Brewery Wastewater Sludge and Spent Grains.","authors":"Bontu Teshome, Berhanu Assefa, Kenatu Angassa","doi":"10.1155/2024/1710628","DOIUrl":"https://doi.org/10.1155/2024/1710628","url":null,"abstract":"<p><p>Biomass waste energy recovery is a significant method for recycling energy from waste and capturing it for use in renewable energy sources. The abundance of brewing byproducts, such as brewery spent grain (BSG) and brewery wastewater sludge (BWWS), as well as their high carbon concentrations gives these wastes energy potential. With 20% molasses utilized as a binding agent to maximize the high caloric value of the briquette, this study sought to examine the quality of mixed briquettes made from BSG and BWWS. In order to make composite briquettes with a maximum caloric content of 19.94 MJ/kg, the ideal conditions were chosen, which included a temperature of 350°C, a production period of 60 min, and a 75% BSG mixing ratio. It can be compared to sawdust briquettes, which have a calorific value of 22.88 MJ/kg, by looking at the calorific value of densified with pressure 100 bar for mixed carbonized briquettes vs mixed noncarbonized briquettes (21.13 MJ/kg). The value of <i>R</i> <sup>2</sup> was 0.9607 and indicated that 96.07% of the total validation in the calorific value correlation between experimental and predicted values. The finding of the study showed that the efficiency of the quadratic model in fitting the data would be higher under the conditions of the experiment. Based on ISO 17225-6 fuel quality classes and specifications for graded nonwoody pellets, the study concluded that using BSG and BWWS as alternative energy sources meets those requirements.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A layer of smear that coats the walls of root canals is produced by root canal instrumentation, which could be unfavorable to endodontic therapy. The endodontic irrigant SmearOFF is designed to effectively remove both the smear layer and bacteria concurrently. The objective of this study was to evaluate and compare the efficacy of SmearOFF and 17% EDTA in removing the smear layer across the coronal, middle, and apical thirds of root canals. Sixty-four single-canal mandibular premolar roots were chosen. Two irrigant protocols were separated into two sets of thirty-two teeth, respectively, Group 1 (6% NaOCL/SmearOFF) and Group 2 (6% NaOCl/17% EDTA.) Until X2, the ProtaperNext rotary system (Dentsply, Maillefer, Switzerland), with a COXO C-SMART Endomotor (Foshan COXO Medical instrument Co., Ltd., China) was utilized for the shaping of all teeth, the equipment settings were tuned to 300 revolutions per minute (rpm) and a torque of 3 Newton-centimeters (Ncm). Before applying the final irrigants, an initial irrigation with 6% sodium hypochlorite (NaOCl) was performed using a 27-G side-vented needle. An ultrasonic gadget, EndoUltra, was utilized to activate the irrigation. After that, the determination of how well the proposed solutions worked on the prepared teeth was conducted by scanning electron microscopy. The mean smear layer scores were lower in all three regions (coronal, middle, and apical) using 17% EDTA in comparison with the samples treated with SmearOFF. Despite that, there were no significant differences between G1, 6% NaOCL/SmearOFF and G2, 6% NaOCL/17% EDTA in smear layer removal according to Kruskal-Wallis tests and Mann-Whitney U-tests (p < 0.05). Considering the findings of this investigation, both 17% EDTA and SmearOFF serve as chelating agents, demonstrating the capability to effectively remove the smear layer. This process is facilitated with the assistance of passive ultrasonic irrigation at intervals of every third of the root canal.
{"title":"Unveiling SmearOFF Efficacy in Smear Layer Removal through Ultrasonic Activation Examined by Scanning Electron Microscopy.","authors":"Hidayat Ababakr Khudhur, Diyar Khalid Bakr, Niaz Hamaghareeb Hamasaeed, Sazan Sherdl Saleem, Sohela Fakher Mahdi, Hozan Farid Tawfiq","doi":"10.1155/2024/8188413","DOIUrl":"https://doi.org/10.1155/2024/8188413","url":null,"abstract":"<p><p>A layer of smear that coats the walls of root canals is produced by root canal instrumentation, which could be unfavorable to endodontic therapy. The endodontic irrigant SmearOFF is designed to effectively remove both the smear layer and bacteria concurrently. The objective of this study was to evaluate and compare the efficacy of SmearOFF and 17% EDTA in removing the smear layer across the coronal, middle, and apical thirds of root canals. Sixty-four single-canal mandibular premolar roots were chosen. Two irrigant protocols were separated into two sets of thirty-two teeth, respectively, Group 1 (6% NaOCL/SmearOFF) and Group 2 (6% NaOCl/17% EDTA.) Until X2, the ProtaperNext rotary system (Dentsply, Maillefer, Switzerland), with a COXO C-SMART Endomotor (Foshan COXO Medical instrument Co., Ltd., China) was utilized for the shaping of all teeth, the equipment settings were tuned to 300 revolutions per minute (rpm) and a torque of 3 Newton-centimeters (Ncm). Before applying the final irrigants, an initial irrigation with 6% sodium hypochlorite (NaOCl) was performed using a 27-G side-vented needle. An ultrasonic gadget, EndoUltra, was utilized to activate the irrigation. After that, the determination of how well the proposed solutions worked on the prepared teeth was conducted by scanning electron microscopy. The mean smear layer scores were lower in all three regions (coronal, middle, and apical) using 17% EDTA in comparison with the samples treated with SmearOFF. Despite that, there were no significant differences between G1, 6% NaOCL/SmearOFF and G2, 6% NaOCL/17% EDTA in smear layer removal according to Kruskal-Wallis tests and Mann-Whitney <i>U</i>-tests (<i>p</i> < 0.05). Considering the findings of this investigation, both 17% EDTA and SmearOFF serve as chelating agents, demonstrating the capability to effectively remove the smear layer. This process is facilitated with the assistance of passive ultrasonic irrigation at intervals of every third of the root canal.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479784/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18eCollection Date: 2024-01-01DOI: 10.1155/2024/6148496
Jemwel Aron, Ronald Bual, Johnel Alimasag, Fernan Arellano, Lean Baclayon, Zesreal Cain Bantilan, Gladine Lumancas, Michael John Nisperos, Marionilo Labares, Kit Dominick Don Valle, Hernando Bacosa
Tilapia, a widely farmed aquaculture fish, produces substantial waste, including viscera that contain extracellular matrix (ECM) utilized as a biomaterial for tissue regeneration applications. Extracting ECM from viscera requires a specific decellularization method, as no standardized protocol exists. This study performed three decellularization methods: sonication, orbital shaking at room temperature, and agitation at 4°C, using SDS and TX100 at concentrations of 0.1% and 0.3%. The effectiveness of each method was assessed through H&E staining, dsDNA quantification, and SEM imaging to verify cellular content removal and ECM structure preservation. Additional analyses, including ATR-FTIR, SDS-PAGE, protein quantification, HPLC, and detergent residue tests, were performed to examine functional groups, collagen composition, protein content, amino acid profiles, and detergent residues in the decellularized samples. The results of H&E staining showed a significant reduction in cellular components in all samples, which was confirmed through DNA quantification. Sonication with 0.3% SDS achieved the highest DNA removal rate (96.5 ± 1.1%), while SEM images revealed that agitation at 4°C with 0.3% TX100 better preserved ECM structure. Collagen was present in all samples, as confirmed by ATR-FTIR analysis, which revealed pronounced spectral peaks in the amide I, II, III, A, and B regions. Samples treated with agitation at 4°C using 0.1% SDS exhibited the highest protein content (875 ± 15 µg/mg), whereas those treated with TX100 had lower detergent residue. Overall, the decellularization methods effectively reduced DNA content while preserving ECM structure and components, highlighting the potential of tilapia viscera as bioscaffolds and offering insights into utilizing fish waste for high-value products.
{"title":"Effects of Various Decellularization Methods for the Development of Decellularized Extracellular Matrix from Tilapia (<i>Oreochromis niloticus</i>) Viscera.","authors":"Jemwel Aron, Ronald Bual, Johnel Alimasag, Fernan Arellano, Lean Baclayon, Zesreal Cain Bantilan, Gladine Lumancas, Michael John Nisperos, Marionilo Labares, Kit Dominick Don Valle, Hernando Bacosa","doi":"10.1155/2024/6148496","DOIUrl":"https://doi.org/10.1155/2024/6148496","url":null,"abstract":"<p><p>Tilapia, a widely farmed aquaculture fish, produces substantial waste, including viscera that contain extracellular matrix (ECM) utilized as a biomaterial for tissue regeneration applications. Extracting ECM from viscera requires a specific decellularization method, as no standardized protocol exists. This study performed three decellularization methods: sonication, orbital shaking at room temperature, and agitation at 4°C, using SDS and TX100 at concentrations of 0.1% and 0.3%. The effectiveness of each method was assessed through H&E staining, dsDNA quantification, and SEM imaging to verify cellular content removal and ECM structure preservation. Additional analyses, including ATR-FTIR, SDS-PAGE, protein quantification, HPLC, and detergent residue tests, were performed to examine functional groups, collagen composition, protein content, amino acid profiles, and detergent residues in the decellularized samples. The results of H&E staining showed a significant reduction in cellular components in all samples, which was confirmed through DNA quantification. Sonication with 0.3% SDS achieved the highest DNA removal rate (96.5 ± 1.1%), while SEM images revealed that agitation at 4°C with 0.3% TX100 better preserved ECM structure. Collagen was present in all samples, as confirmed by ATR-FTIR analysis, which revealed pronounced spectral peaks in the amide I, II, III, A, and B regions. Samples treated with agitation at 4°C using 0.1% SDS exhibited the highest protein content (875 ± 15 <i>µ</i>g/mg), whereas those treated with TX100 had lower detergent residue. Overall, the decellularization methods effectively reduced DNA content while preserving ECM structure and components, highlighting the potential of tilapia viscera as bioscaffolds and offering insights into utilizing fish waste for high-value products.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18eCollection Date: 2024-01-01DOI: 10.1155/2024/9896516
Maged S Al-Fakeh, Maha A Alsikhan, Jawza Sh Alnawmasi, Mona S Al-Wahibi
[This corrects the article DOI: 10.1155/2024/9198129.].
[This corrects the article DOI: 10.1155/2024/9198129.].
{"title":"Corrigendum to \"New Nanosized V(III), Fe(III), and Ni(II) Complexes Comprising Schiff Base and 2-Amino-4-Methyl Pyrimidine: Synthesis, Properties, and Biological Activity\".","authors":"Maged S Al-Fakeh, Maha A Alsikhan, Jawza Sh Alnawmasi, Mona S Al-Wahibi","doi":"10.1155/2024/9896516","DOIUrl":"https://doi.org/10.1155/2024/9896516","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1155/2024/9198129.].</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ridge preservation is an important technique for maintaining the dimensions of the alveolar bone following tooth extraction, which is crucial for successful tooth rehabilitation. The combination of bovine amniotic membrane and hydroxyapatite has shown promise as a scaffold material containing growth factors that can stimulate osteogenic-related factors such as bone morphogenetic protein 2 (BMP2), Runt-related transcription factor 2 (RUNX2), and osteocalcin. This stimulation leads to collagen production and osteoblast proliferation, resulting in new bone formation. In this study, bovine amniotic membrane-hydroxyapatite (BAM-HA) composites were prepared using three different ratios of bovine amniotic membrane and hydroxyapatite (2 : 3, 3 : 7, 7 : 13). Thirty Sprague-Dawley rats had their first incisors extracted, and different types of BAM-HA were applied for ridge preservation. The control group received no treatment, while the positive control group was given xenograft. After 14 and 28 days, the animals were sacrificed, and immunohistochemical analysis was performed to evaluate the expression of BMP2, RUNX2, and osteocalcin. Additionally, a histological examination was conducted to analyse collagen thickness and osteoblast cell proliferation. The results demonstrated that the application of BAM-HA significantly increased collagen density, osteoblast cell proliferation, and the expression of BMP2, RUNX2, and osteoclacin compared to the control group (p < 0.05) on both days 14 and 28. Furthermore, increasing the hydroxyapatite content in the composite was found to enhance collagen thickness, osteoblast cell proliferation, and the expression of osteogenic-related factors. These preliminary findings suggest that the combination of BAM-HA can be used for ridge preservation to prevent further bone resorption following tooth extraction.
{"title":"The Role of Bovine Amniotic Membrane and Hydroxyapatite for the Ridge Preservation.","authors":"Octarina Octarina, Elly Munadziroh, Fathilah Abdul Razak, Ekowati Handharyani, Meircurius Dwi Condro Surboyo","doi":"10.1155/2024/4053527","DOIUrl":"https://doi.org/10.1155/2024/4053527","url":null,"abstract":"<p><p>Ridge preservation is an important technique for maintaining the dimensions of the alveolar bone following tooth extraction, which is crucial for successful tooth rehabilitation. The combination of bovine amniotic membrane and hydroxyapatite has shown promise as a scaffold material containing growth factors that can stimulate osteogenic-related factors such as bone morphogenetic protein 2 (BMP2), Runt-related transcription factor 2 (RUNX2), and osteocalcin. This stimulation leads to collagen production and osteoblast proliferation, resulting in new bone formation. In this study, bovine amniotic membrane-hydroxyapatite (BAM-HA) composites were prepared using three different ratios of bovine amniotic membrane and hydroxyapatite (2 : 3, 3 : 7, 7 : 13). Thirty <i>Sprague-Dawley</i> rats had their first incisors extracted, and different types of BAM-HA were applied for ridge preservation. The control group received no treatment, while the positive control group was given xenograft. After 14 and 28 days, the animals were sacrificed, and immunohistochemical analysis was performed to evaluate the expression of BMP2, RUNX2, and osteocalcin. Additionally, a histological examination was conducted to analyse collagen thickness and osteoblast cell proliferation. The results demonstrated that the application of BAM-HA significantly increased collagen density, osteoblast cell proliferation, and the expression of BMP2, RUNX2, and osteoclacin compared to the control group (<i>p</i> < 0.05) on both days 14 and 28. Furthermore, increasing the hydroxyapatite content in the composite was found to enhance collagen thickness, osteoblast cell proliferation, and the expression of osteogenic-related factors. These preliminary findings suggest that the combination of BAM-HA can be used for ridge preservation to prevent further bone resorption following tooth extraction.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10eCollection Date: 2024-01-01DOI: 10.1155/2024/5184399
Nour Sh El-Gendy, Mohamed Hosny, Abdallah R Ismail, Ahmad A Radwan, Basma A Ali, Hager R Ali, Radwa A El-Salamony, Khaled M Abdelsalam, Manal Mubarak
To increase the limited commercial utility and lessen the negative environmental effects of the massive growth of brown macroalgae, this work illustrates the feasibility of valorizing the invasively proliferated Sargassum latifolium into different value-added products. The proximate analysis recommends its applicability as a solid biofuel with a sufficient calorific value (14.82 ± 0.5 MJ/kg). It contains 6.00 ± 0.07% N + P2O5 + K2O and 29.61 ± 0.05% organic C. Its nutritional analysis proved notable carbohydrate, ash, protein, and fiber contents with a rational amount of lipid and a considerable amount of beneficial macronutrients and micronutrients, with a low concentration of undesirable heavy metals. That recommends its application in the organic fertilizer, food, medicine, and animal fodder industries. A proposed eco-friendly sequential integrated process valorized its biomass into 77.6 ± 0.5 mg/g chlorophyll, 180 ± 0.5 mg/g carotenoids, 5.86 ± 0.5 mg/g fucoxanthin, 0.93 ± 0.5 mg/g β-carotene, 21.97 ± 0.5% (w/w) alginate, and 16.40 ± 0.5% (w/w) cellulose, with different industrial and bioprocess applications. Furthermore, Aspergillus galapagensis SBWF1, Mucor hiemalis SBWF2, and Penicillium oxalicum SBWF3 (GenBank accession numbers OR636487, OR636488, and OR636489) have been isolated from its fresh biomass. Those showed wide versatility for hydrolyzing and saccharifying its polysaccharides. A Gram-negative Stutzerimonas stutzeri SBB1(GenBank accession number OR764547) has also been isolated with good capabilities to ferment the produced pentoses, hexoses, and mannitol from the fungal saccharification, yielding 0.25 ± 0.014, 0.26 ± 0.018, and 0.37 ± 0.020 g ethanol/g algal biomass, respectively. Furthermore, in a pioneering step for valuing the suggested sequential biomass hydrolysis and bioethanol fermentation processes, the spent waste S. latifolium disposed of from the saccharification process has been valorized into C-dots with potent biocidal activity against pathogenic microorganisms.
{"title":"A Study on the Potential of Valorizing <i>Sargassum latifolium</i> into Biofuels and Sustainable Value-Added Products.","authors":"Nour Sh El-Gendy, Mohamed Hosny, Abdallah R Ismail, Ahmad A Radwan, Basma A Ali, Hager R Ali, Radwa A El-Salamony, Khaled M Abdelsalam, Manal Mubarak","doi":"10.1155/2024/5184399","DOIUrl":"https://doi.org/10.1155/2024/5184399","url":null,"abstract":"<p><p>To increase the limited commercial utility and lessen the negative environmental effects of the massive growth of brown macroalgae, this work illustrates the feasibility of valorizing the invasively proliferated <i>Sargassum latifolium</i> into different value-added products. The proximate analysis recommends its applicability as a solid biofuel with a sufficient calorific value (14.82 ± 0.5 MJ/kg). It contains 6.00 ± 0.07% N + P<sub>2</sub>O<sub>5</sub> + K<sub>2</sub>O and 29.61 ± 0.05% organic C. Its nutritional analysis proved notable carbohydrate, ash, protein, and fiber contents with a rational amount of lipid and a considerable amount of beneficial macronutrients and micronutrients, with a low concentration of undesirable heavy metals. That recommends its application in the organic fertilizer, food, medicine, and animal fodder industries. A proposed eco-friendly sequential integrated process valorized its biomass into 77.6 ± 0.5 mg/g chlorophyll, 180 ± 0.5 mg/g carotenoids, 5.86 ± 0.5 mg/g fucoxanthin, 0.93 ± 0.5 mg/g <i>β</i>-carotene, 21.97 ± 0.5% (w/w) alginate, and 16.40 ± 0.5% (w/w) cellulose, with different industrial and bioprocess applications. Furthermore, <i>Aspergillus galapagensis</i> SBWF1, <i>Mucor hiemalis</i> SBWF2, and <i>Penicillium oxalicum</i> SBWF3 (GenBank accession numbers OR636487, OR636488, and OR636489) have been isolated from its fresh biomass. Those showed wide versatility for hydrolyzing and saccharifying its polysaccharides. A Gram-negative <i>Stutzerimonas stutzeri</i> SBB1(GenBank accession number OR764547) has also been isolated with good capabilities to ferment the produced pentoses, hexoses, and mannitol from the fungal saccharification, yielding 0.25 ± 0.014, 0.26 ± 0.018, and 0.37 ± 0.020 g ethanol/g algal biomass, respectively. Furthermore, in a pioneering step for valuing the suggested sequential biomass hydrolysis and bioethanol fermentation processes, the spent waste <i>S. latifolium</i> disposed of from the saccharification process has been valorized into C-dots with potent biocidal activity against pathogenic microorganisms.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02eCollection Date: 2024-01-01DOI: 10.1155/2024/3850286
Germán Alvarado Tenorio, Roberto Espinosa Neira, Carlos Alberto Ávila Orta, Gabriela Yolotzín Romero Zúñiga, Hortensia Ortega Ortiz
The high degree of chemical modification of the chitosan chains due to protonated amine groups allows them to react with many negatively charged surfaces as anionic polymers and cell membranes, resulting in an attractive material for medical and pharmaceutics applications. Incorporating ionic iodine (I- and IO3-) on chitosan chains is a direct way to successfully obtain chitosan-iodine nanoparticles (CSNPs-I and CSNPs-IO3) through ionic gelation. The nanoparticles (NPs) present a hemispherical morphology with sizes around 30-70 nm for CSNPs-I and CSNPs-IO3, similar to chitosan NPs, in accordance with SEM and DLS techniques. The XRD characterization did not show noticeable differences in the crystallinity index (CI) for CSNPs and CSNPs-I, 48.4 and 49.3%, respectively, but for CSNPs-IO3, the CI decreased to 43.85%. The cytotoxic effects on human tumor cells of chitosan and iodine-modified chitosan nanoparticles (CSNPs-I and CSNPs-IO3) were evaluated for 24 h in a range from 0.15 mg/mL to 0.95 mg/mL concentrations, where CSNPs-IO3 presented the lower viability for lung cancer A549, followed by cervical cancer HeLa cell and finally breast cancer MDA-MB-231, with a weight content of iodate ion in a range of 8.7 to 15 μg. This work presents the possibility of exploring chitosan-iodine NPs in medical applications.
{"title":"Synthesis and Characterization of Iodinated Chitosan Nanoparticles and Their Effects on Cancer Cells.","authors":"Germán Alvarado Tenorio, Roberto Espinosa Neira, Carlos Alberto Ávila Orta, Gabriela Yolotzín Romero Zúñiga, Hortensia Ortega Ortiz","doi":"10.1155/2024/3850286","DOIUrl":"https://doi.org/10.1155/2024/3850286","url":null,"abstract":"<p><p>The high degree of chemical modification of the chitosan chains due to protonated amine groups allows them to react with many negatively charged surfaces as anionic polymers and cell membranes, resulting in an attractive material for medical and pharmaceutics applications. Incorporating ionic iodine (I<sup>-</sup> and IO<sub>3</sub> <sup>-</sup>) on chitosan chains is a direct way to successfully obtain chitosan-iodine nanoparticles (CSNPs-I and CSNPs-IO<sub>3</sub>) through ionic gelation. The nanoparticles (NPs) present a hemispherical morphology with sizes around 30-70 nm for CSNPs-I and CSNPs-IO<sub>3</sub>, similar to chitosan NPs, in accordance with SEM and DLS techniques. The XRD characterization did not show noticeable differences in the crystallinity index (CI) for CSNPs and CSNPs-I, 48.4 and 49.3%, respectively, but for CSNPs-IO<sub>3</sub>, the CI decreased to 43.85%. The cytotoxic effects on human tumor cells of chitosan and iodine-modified chitosan nanoparticles (CSNPs-I and CSNPs-IO<sub>3</sub>) were evaluated for 24 h in a range from 0.15 mg/mL to 0.95 mg/mL concentrations, where CSNPs-IO<sub>3</sub> presented the lower viability for lung cancer A549, followed by cervical cancer HeLa cell and finally breast cancer MDA-MB-231, with a weight content of iodate ion in a range of 8.7 to 15 <i>μ</i>g. This work presents the possibility of exploring chitosan-iodine NPs in medical applications.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone tissue engineering necessitates the development of scaffolds with optimal properties to provide a suitable microenvironment for cell adhesion, proliferation, and osteogenic differentiation. The selection of appropriate scaffold materials remains a critical challenge in this field. In this study, we aimed to address this challenge by evaluating and comparing the performance of hydrogel scaffolds reinforced with β-tricalcium phosphate (β-TCP), allograft, and a combination of allograft and strontium hydroxyapatite (SrHA). In this study, scaffolds containing the following compounds with a weight ratio of 75 : 25 : 50 were made using a 3D printer: group (1) alginate + gelatin + β-TCP (TCP), group (2) alginate + gelatin + allograft (Allo), and group (3) alginate + gelatin + allograft + strontium hydroxyapatite (Str). Stem cells extracted from rat bone marrow (rBMSCs) were cultured on scaffolds, and cell proliferation and differentiation tests were performed. Also, the physical and chemical properties of the scaffolds were investigated. The two/one-way analysis of variance (ANOVA) by Tukey's post hoc test was performed. There was no significant difference between scaffolds with pore size and porosity. TCP scaffolds' mechanical strength and degradation rate were significantly lower than the other two groups (P < 0.05). Also, the swelling ratio of Allo scaffolds was higher than in other samples. The amount of cell proliferation in the samples of the TCP group was lower than the other two, and the Allo samples had the best results in this concern (P < 0.01). However, the scaffolds containing strontium hydroxyapatite had significantly higher bone differentiation compared to the other two groups, and the lowest results were related to the scaffolds containing β-TCP. Hydrogel scaffolds reinforced with allograft or its combination with strontium showed better physicochemical and biological behavior compared to those reinforced with β-TCP. Besides, adding strontium had a limited impact on the physicochemical features of allograft-containing scaffolds while improving their potential to induce osteogenic differentiation.
{"title":"Physicochemical and Biological Characterization of Gelatin/Alginate Scaffolds Reinforced with <i>β</i>-TCP, FDBA, and SrHA: Insights into Stem Cell Behavior and Osteogenic Differentiation.","authors":"Sadra Mohaghegh, Hanieh Nokhbatolfoghahaei, Sahar Baniameri, Hekmat Farajpour, Massoumeh Jabbari Fakhr, Fatemeh Shokrolahi, Arash Khojasteh","doi":"10.1155/2024/1365080","DOIUrl":"https://doi.org/10.1155/2024/1365080","url":null,"abstract":"<p><p>Bone tissue engineering necessitates the development of scaffolds with optimal properties to provide a suitable microenvironment for cell adhesion, proliferation, and osteogenic differentiation. The selection of appropriate scaffold materials remains a critical challenge in this field. In this study, we aimed to address this challenge by evaluating and comparing the performance of hydrogel scaffolds reinforced with <i>β</i>-tricalcium phosphate (<i>β</i>-TCP), allograft, and a combination of allograft and strontium hydroxyapatite (SrHA). In this study, scaffolds containing the following compounds with a weight ratio of 75 : 25 : 50 were made using a 3D printer: group (1) alginate + gelatin + <i>β</i>-TCP (TCP), group (2) alginate + gelatin + allograft (Allo), and group (3) alginate + gelatin + allograft + strontium hydroxyapatite (Str). Stem cells extracted from rat bone marrow (rBMSCs) were cultured on scaffolds, and cell proliferation and differentiation tests were performed. Also, the physical and chemical properties of the scaffolds were investigated. The two/one-way analysis of variance (ANOVA) by Tukey's post hoc test was performed. There was no significant difference between scaffolds with pore size and porosity. TCP scaffolds' mechanical strength and degradation rate were significantly lower than the other two groups (<i>P</i> < 0.05). Also, the swelling ratio of Allo scaffolds was higher than in other samples. The amount of cell proliferation in the samples of the TCP group was lower than the other two, and the Allo samples had the best results in this concern (<i>P</i> < 0.01). However, the scaffolds containing strontium hydroxyapatite had significantly higher bone differentiation compared to the other two groups, and the lowest results were related to the scaffolds containing <i>β</i>-TCP. Hydrogel scaffolds reinforced with allograft or its combination with strontium showed better physicochemical and biological behavior compared to those reinforced with <i>β</i>-TCP. Besides, adding strontium had a limited impact on the physicochemical features of allograft-containing scaffolds while improving their potential to induce osteogenic differentiation.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23eCollection Date: 2024-01-01DOI: 10.1155/2024/4190647
Amin Salem Milani, Faezeh Hadinia, Yashar Rezaei, Mohammad Hossein Soroush Barhaghi, Kamal Attari, Ahmad Nouroloyouni
Objectives: This study aimed to assess the effect of addition of bioactive glass (BG) on the setting time and antibacterial activity of mineral trioxide aggregate (MTA) against Enterococcus faecalis (E. faecalis).
Materials and methods: In this in vitro study, BG was synthesized by the sol-gel technique and added to MTA powder in certain ratios. Three groups of specimens were fabricated from pure MTA, MTA mixed with 10wt% BG, and MTA mixed with 20wt% BG. The setting time of specimens was measured according to ISO9917-2007. Direct contact test was used to assess the antimicrobial activity of the three groups against E. faecalis. Data were analyzed by repeated measures ANOVA (alpha = 0.05).
Results: Addition of BG (in both concentrations) to MTA decreased its setting time and improved its antibacterial activity against E. faecalis (p < 0.05). By an increase in concentration of BG (20%), the antimicrobial activity further improved (p < 0.05).
Conclusion: Addition of BG to MTA in 10wt% and 20wt% concentrations decreased its setting time and improved its antibacterial activity against E. faecalis.
研究目的本研究旨在评估添加生物活性玻璃(BG)对三氧化物矿物质骨料(MTA)的凝结时间和粪肠球菌(E. faecalis)抗菌活性的影响:在这项体外研究中,采用溶胶-凝胶技术合成了 BG,并按一定比例添加到 MTA 粉末中。由纯 MTA、混合了 10wt% BG 的 MTA 和混合了 20wt% BG 的 MTA 制成了三组试样。根据 ISO9917-2007 测量了试样的凝固时间。直接接触试验用于评估三组材料对粪大肠杆菌的抗菌活性。数据采用重复测量方差分析(α = 0.05):结果:在 MTA 中添加 BG(两种浓度)可缩短其凝固时间并提高其对粪肠球菌的抗菌活性(p < 0.05)。随着 BG 浓度的增加(20%),抗菌活性进一步提高(p < 0.05):结论:在浓度为 10wt% 和 20wt% 的 MTA 中添加 BG 缩短了凝固时间,并提高了其对粪肠球菌的抗菌活性。
{"title":"Addition of Bioactive Glass Decreases Setting Time and Improves Antibacterial Properties of Mineral Trioxide Aggregate.","authors":"Amin Salem Milani, Faezeh Hadinia, Yashar Rezaei, Mohammad Hossein Soroush Barhaghi, Kamal Attari, Ahmad Nouroloyouni","doi":"10.1155/2024/4190647","DOIUrl":"https://doi.org/10.1155/2024/4190647","url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to assess the effect of addition of bioactive glass (BG) on the setting time and antibacterial activity of mineral trioxide aggregate (MTA) against Enterococcus faecalis (E. faecalis).</p><p><strong>Materials and methods: </strong>In this in vitro study, BG was synthesized by the sol-gel technique and added to MTA powder in certain ratios. Three groups of specimens were fabricated from pure MTA, MTA mixed with 10wt% BG, and MTA mixed with 20wt% BG. The setting time of specimens was measured according to ISO9917-2007. Direct contact test was used to assess the antimicrobial activity of the three groups against E. faecalis. Data were analyzed by repeated measures ANOVA (alpha = 0.05).</p><p><strong>Results: </strong>Addition of BG (in both concentrations) to MTA decreased its setting time and improved its antibacterial activity against E. faecalis (<i>p</i> < 0.05). By an increase in concentration of BG (20%), the antimicrobial activity further improved (<i>p</i> < 0.05).</p><p><strong>Conclusion: </strong>Addition of BG to MTA in 10wt% and 20wt% concentrations decreased its setting time and improved its antibacterial activity against E. faecalis.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}