Yan-Jiao Chen, Cai-Tao Chen, Gabriel Shimizu Bassi, Yong-Qing Yang
{"title":"Asthma research in mice: An overview of current models and their methodological variability.","authors":"Yan-Jiao Chen, Cai-Tao Chen, Gabriel Shimizu Bassi, Yong-Qing Yang","doi":"10.1080/08830185.2024.2431507","DOIUrl":null,"url":null,"abstract":"<p><p>Studies in murine experimental models have made significant contributions to the understanding of asthma pathophysiology and the discovery of innovative therapeutic approaches. Nonetheless, there is a plethora of options available for selecting mouse strains, sensitization methods, challenge routes and doses, as well as approaches to evaluating host response in murine asthma model protocols. Due to the diversity of models employed, comparing results across different studies proves exceedingly challenging. The study conducted a search of pertinent PubMed articles from 2022 to April 15th, 2024. After relevant publications had been selected, the characteristics of each study were extracted, including animal strains, animal sex, sensitization methods, challenge methods, and reported outcome measures. The modeling parameters of Ovalbumin (OVA)-induced asthma model, and House Dust Mite-induced asthma model were analyzed. Additionally, we extracted data on the dose of OVA sensitization, alum administration, challenge OVA dose, and alum/sensitization OVA ratio from seven included studies. Subsequently, we conducted an analysis to determine the correlation between each of these factors and the lung resistance index (RI). This study presents an overview of the current mouse asthma models, offering valuable methodological guidance for researchers. Furthermore, this study highlights that certain parameters like sensitization dose, challenge dose, and so on, exert specific effects on the asthma lung resistance. However, there is a lack of standardized criteria and guidelines in this regard. The effects and underlying mechanisms of parameters on asthma responses remain unclear, necessitating further investigation into model parameters.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1-14"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Reviews of Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08830185.2024.2431507","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Studies in murine experimental models have made significant contributions to the understanding of asthma pathophysiology and the discovery of innovative therapeutic approaches. Nonetheless, there is a plethora of options available for selecting mouse strains, sensitization methods, challenge routes and doses, as well as approaches to evaluating host response in murine asthma model protocols. Due to the diversity of models employed, comparing results across different studies proves exceedingly challenging. The study conducted a search of pertinent PubMed articles from 2022 to April 15th, 2024. After relevant publications had been selected, the characteristics of each study were extracted, including animal strains, animal sex, sensitization methods, challenge methods, and reported outcome measures. The modeling parameters of Ovalbumin (OVA)-induced asthma model, and House Dust Mite-induced asthma model were analyzed. Additionally, we extracted data on the dose of OVA sensitization, alum administration, challenge OVA dose, and alum/sensitization OVA ratio from seven included studies. Subsequently, we conducted an analysis to determine the correlation between each of these factors and the lung resistance index (RI). This study presents an overview of the current mouse asthma models, offering valuable methodological guidance for researchers. Furthermore, this study highlights that certain parameters like sensitization dose, challenge dose, and so on, exert specific effects on the asthma lung resistance. However, there is a lack of standardized criteria and guidelines in this regard. The effects and underlying mechanisms of parameters on asthma responses remain unclear, necessitating further investigation into model parameters.
期刊介绍:
This review journal provides the most current information on basic and translational research in immunology and related fields. In addition to invited reviews, the journal accepts for publication articles and editorials on relevant topics proposed by contributors. Each issue of International Reviews of Immunology contains both solicited and unsolicited review articles, editorials, and ''In-this-Issue'' highlights. The journal also hosts reviews that position the authors'' original work relative to advances in a given field, bridging the gap between annual reviews and the original research articles.
This review series is relevant to all immunologists, molecular biologists, microbiologists, translational scientists, industry researchers, and physicians who work in basic and clinical immunology, inflammatory and allergic diseases, vaccines, and additional topics relevant to medical research and drug development that connect immunology to disciplines such as oncology, cardiovascular disease, and metabolic disorders.
Covered in International Reviews of Immunology: Basic and developmental immunology (innate and adaptive immunity; inflammation; and tumor and microbial immunology); Clinical research (mechanisms of disease in man pertaining to infectious diseases, autoimmunity, allergy, oncology / immunology); and Translational research (relevant to biomarkers, diagnostics, vaccines, and drug development).