首页 > 最新文献

International Reviews of Immunology最新文献

英文 中文
Retraction. 撤回。
IF 4.3 4区 医学 Q2 IMMUNOLOGY Pub Date : 2024-11-11 DOI: 10.1080/08830185.2024.2423548
{"title":"Retraction.","authors":"","doi":"10.1080/08830185.2024.2423548","DOIUrl":"https://doi.org/10.1080/08830185.2024.2423548","url":null,"abstract":"","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1"},"PeriodicalIF":4.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction. 撤回。
IF 4.3 4区 医学 Q2 IMMUNOLOGY Pub Date : 2024-11-11 DOI: 10.1080/08830185.2024.2423553
{"title":"Retraction.","authors":"","doi":"10.1080/08830185.2024.2423553","DOIUrl":"https://doi.org/10.1080/08830185.2024.2423553","url":null,"abstract":"","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1"},"PeriodicalIF":4.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recurrent respiratory papillomatosis: Immunological mechanisms involved in recurrence. 复发性呼吸道乳头状瘤病:复发的免疫机制。
IF 5.4 4区 医学 Q2 IMMUNOLOGY Pub Date : 2024-11-07 DOI: 10.1080/08830185.2024.2425428
Katya Karen López-Aguilar, María Eugenia Vargas-Camaño, Fernando Lozano-Patiño, María Isabel Castrejón Vázquez

Recurrent respiratory papillomatosis is a benign neoplastic pathology in children, young people, and adults. It causes a significant deterioration in the quality of life, with symptoms typically referred to as dysphonia and hoarseness. This disease, with variable clinical courses ranging from spontaneous resolution to dissemination of the lower airway or airway obstruction that puts the individual's life at risk, characteristically requires multiple surgical interventions. Therapy with adjuvant drugs does not yet prove the effectiveness necessary to limit the recurrence and need for surgical reoperation in this condition. The review aimed to synthesize the immunopathogenic mechanisms of relapse in recurrent respiratory papillomatosis published in the current literature and the immunological implication of risk factors and treatment.

复发性呼吸道乳头状瘤病是一种良性肿瘤病变,好发于儿童、青少年和成年人。它会导致生活质量明显下降,症状通常表现为发音困难和声音嘶哑。这种疾病的临床表现各不相同,有的可自发缓解,有的可扩散至下气道或气道阻塞,危及患者生命。使用辅助药物进行治疗的有效性尚未得到证实,因此无法限制这种疾病的复发和再次手术的需要。本综述旨在总结目前文献中发表的复发性呼吸道乳头状瘤病复发的免疫致病机制,以及风险因素和治疗方法的免疫学含义。
{"title":"Recurrent respiratory papillomatosis: Immunological mechanisms involved in recurrence.","authors":"Katya Karen López-Aguilar, María Eugenia Vargas-Camaño, Fernando Lozano-Patiño, María Isabel Castrejón Vázquez","doi":"10.1080/08830185.2024.2425428","DOIUrl":"10.1080/08830185.2024.2425428","url":null,"abstract":"<p><p>Recurrent respiratory papillomatosis is a benign neoplastic pathology in children, young people, and adults. It causes a significant deterioration in the quality of life, with symptoms typically referred to as dysphonia and hoarseness. This disease, with variable clinical courses ranging from spontaneous resolution to dissemination of the lower airway or airway obstruction that puts the individual's life at risk, characteristically requires multiple surgical interventions. Therapy with adjuvant drugs does not yet prove the effectiveness necessary to limit the recurrence and need for surgical reoperation in this condition. The review aimed to synthesize the immunopathogenic mechanisms of relapse in recurrent respiratory papillomatosis published in the current literature and the immunological implication of risk factors and treatment.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1-14"},"PeriodicalIF":5.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The NLRP3 inflammasome: Mechanisms of activation, regulation, and role in diseases. NLRP3 炎症小体:激活机制、调控和在疾病中的作用。
IF 4.3 4区 医学 Q2 IMMUNOLOGY Pub Date : 2024-10-14 DOI: 10.1080/08830185.2024.2415688
Mina Dadkhah, Mohammadreza Sharifi

Because of numerous stress signals, intracellular protein complexes are called inflammasomes. They function as catalysts for the proteolytic transformation of pro-interleukin into the active form of interleukin. Inflammasomes can promote a type of cell death process known as pyroptosis. The NLRP3 inflammasome, comprised of the NLRP3 protein, procaspase-1, and ASC, tightly regulates inflammation. The NLRP3 inflammasome is activated by a variety of stimuli, and several molecular and cellular events, such as ion influx, mitochondrial dysfunction, reactive oxygen species production, and lysosomal damage have been shown to trigger its activation. Inflammation plays a major role in almost all types of human diseases. The NLRP3 inflammasome has been the most widely studied and plays an important pathogenic role in various inflammatory pathologies. This review briefly presents the basic features of NLRP3 inflammasome and their mechanisms of activation and regulation. In addition, recent studies report the role of NLRP3 inflammasome in several diseases have been summarized.

由于压力信号众多,细胞内的蛋白质复合物被称为炎性体。它们起着催化剂的作用,可将原白细胞介素蛋白水解为活性形式的白细胞介素。炎症小体可促进一种被称为 "裂解"(pyroptosis)的细胞死亡过程。NLRP3 炎症体由 NLRP3 蛋白、procaspase-1 和 ASC 组成,对炎症起着严格的调节作用。NLRP3 炎症小体可被多种刺激激活,多种分子和细胞事件,如离子流入、线粒体功能障碍、活性氧生成和溶酶体损伤,都已被证明可触发其激活。炎症在几乎所有类型的人类疾病中都扮演着重要角色。对 NLRP3 炎性体的研究最为广泛,它在各种炎症病理中扮演着重要的致病角色。本综述简要介绍了 NLRP3 炎症小体的基本特征及其激活和调控机制。此外,还总结了最近关于 NLRP3 炎症小体在几种疾病中的作用的研究报告。
{"title":"The NLRP3 inflammasome: Mechanisms of activation, regulation, and role in diseases.","authors":"Mina Dadkhah, Mohammadreza Sharifi","doi":"10.1080/08830185.2024.2415688","DOIUrl":"https://doi.org/10.1080/08830185.2024.2415688","url":null,"abstract":"<p><p>Because of numerous stress signals, intracellular protein complexes are called inflammasomes. They function as catalysts for the proteolytic transformation of pro-interleukin into the active form of interleukin. Inflammasomes can promote a type of cell death process known as pyroptosis. The NLRP3 inflammasome, comprised of the NLRP3 protein, procaspase-1, and ASC, tightly regulates inflammation. The NLRP3 inflammasome is activated by a variety of stimuli, and several molecular and cellular events, such as ion influx, mitochondrial dysfunction, reactive oxygen species production, and lysosomal damage have been shown to trigger its activation. Inflammation plays a major role in almost all types of human diseases. The NLRP3 inflammasome has been the most widely studied and plays an important pathogenic role in various inflammatory pathologies. This review briefly presents the basic features of NLRP3 inflammasome and their mechanisms of activation and regulation. In addition, recent studies report the role of NLRP3 inflammasome in several diseases have been summarized.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1-14"},"PeriodicalIF":4.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transforming growth factor-β in tumor microenvironment: Understanding its impact on monocytes and macrophages for its targeting. 肿瘤微环境中的转化生长因子-β:了解其对单核细胞和巨噬细胞的影响,以实现靶向治疗。
IF 4.3 4区 医学 Q2 IMMUNOLOGY Pub Date : 2024-10-08 DOI: 10.1080/08830185.2024.2411998
Tetiana Hourani, Amit Sharma, Rodney B Luwor, Adrian A Achuthan

TGF-β is a pivotal cytokine that orchestrates various aspects of cancer progression, including tumor growth, metastasis, and immune evasion. In this review, we present a comprehensive overview of the multifaceted role of transforming growth factor β (TGF-β) in cancer biology, focusing on its intricate interactions with monocytes and macrophages within the tumor microenvironment (TME). We specifically discuss how TGF-β modulates monocyte and macrophage activities, leading to immunosuppression and tumor progression. We conclude with the current translational and clinical efforts targeting TGF-β, recognizing the promising role of this strategy in immunooncology.

TGF-β 是一种关键的细胞因子,它协调着癌症进展的各个方面,包括肿瘤生长、转移和免疫逃避。在这篇综述中,我们全面概述了转化生长因子 β(TGF-β)在癌症生物学中的多方面作用,重点是它与肿瘤微环境(TME)中的单核细胞和巨噬细胞之间错综复杂的相互作用。我们将具体讨论 TGF-β 如何调节单核细胞和巨噬细胞的活动,从而导致免疫抑制和肿瘤进展。最后,我们介绍了目前以 TGF-β 为靶点的转化和临床工作,认识到这一策略在免疫肿瘤学中大有可为。
{"title":"Transforming growth factor-β in tumor microenvironment: Understanding its impact on monocytes and macrophages for its targeting.","authors":"Tetiana Hourani, Amit Sharma, Rodney B Luwor, Adrian A Achuthan","doi":"10.1080/08830185.2024.2411998","DOIUrl":"https://doi.org/10.1080/08830185.2024.2411998","url":null,"abstract":"<p><p>TGF-β is a pivotal cytokine that orchestrates various aspects of cancer progression, including tumor growth, metastasis, and immune evasion. In this review, we present a comprehensive overview of the multifaceted role of transforming growth factor β (TGF-β) in cancer biology, focusing on its intricate interactions with monocytes and macrophages within the tumor microenvironment (TME). We specifically discuss how TGF-β modulates monocyte and macrophage activities, leading to immunosuppression and tumor progression. We conclude with the current translational and clinical efforts targeting TGF-β, recognizing the promising role of this strategy in immunooncology.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1-16"},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FUNDC1 mediated mitochondria-dependent ferroptosis of epithelial cells in model of asthma by FBXL2/ar/GPX4 signaling pathway of SUMO1 at K136. FUNDC1 通过 K136 处 SUMO1 的 FBXL2/ar/GPX4 信号通路介导哮喘模型中上皮细胞的线粒体依赖性铁氧化。
IF 4.3 4区 医学 Q2 IMMUNOLOGY Pub Date : 2024-09-25 DOI: 10.1080/08830185.2024.2406853
Li Li, Xingxing Zhu, Jiayi Zhao, Jiaying Yuan, Haoran Ni, Jian Fan, Yi Zhang, Yahong Sun, Yan Shang

This study aimed to explore the critical role of FUNDC1 on epithelial cells in model of asthma. Patients with asthma and normal healthy volunteers were obtained from our hospital. The serum of FUNDC1 mRNA expression was down-regulated in patients with asthma. Meanwhile, the serum of FUNDC1 mRNA expression was positive correlation with IgE and anti-HDM IgE protein. FUNDC1 expression in lung tissue of mice model was decreased in mice model of asthma. Sh-FUNDC1 enhanced asthma in mice model of asthma. FUNDC1 up-regulation reduced IL-4, IL-5, IL-10 and IL-13 activity levels in vitro model of asthma.FUNDC1 down-regulation promoted IL-4, IL-5, IL-10 and IL-13 activity levels in vitro model of asthma. FUNDC1 reduced ferroptosis of epithelial cells in model of asthma through the inhibition of mitochondrial damage. FUNDC1 induced FBXL2 and AR protein expression in model of asthma. FUNDC1 interlinked with FBXL2 is modified by SUMO1 at K136. FBXL2, ASN-205, GLN-204, ARG-235, and GLN-237 form hydrogen bonds with FUNDC1's ASP-15, ASP-16, GLU-25, and ARG-29, with lengths of 2.3, 3.1, 2.9, 2.3, and 2.9 Å, respectively. The induction of FBXL2 reduced the effects of Sh-FUNDC1 on asthma in mice model of asthma. The inhibition of AR reduced the effects of Sh-FUNDC1 on asthma in mice model of asthma Overall, FUNDC1 prevents ferroptosis of airway epithelial cells of asthma through FBXL2/AR/GPX4 signaling pathway of SUMO1 at K136. FUNDC1 might benefit the treatment of asthma or other pulmonary disease.

本研究旨在探讨 FUNDC1 在哮喘模型中对上皮细胞的关键作用。哮喘患者和正常健康志愿者均来自我院。哮喘患者血清中 FUNDC1 mRNA 的表达呈下调趋势。同时,血清中 FUNDC1 mRNA 的表达与 IgE 和抗 HDM IgE 蛋白呈正相关。哮喘小鼠模型肺组织中 FUNDC1 的表达减少。Sh-FUNDC1增强了哮喘模型小鼠的哮喘症状。FUNDC1上调可降低体外哮喘模型中IL-4、IL-5、IL-10和IL-13的活性水平。FUNDC1 通过抑制线粒体损伤减少了哮喘模型中上皮细胞的铁突变。FUNDC1 能诱导哮喘模型中 FBXL2 和 AR 蛋白的表达。与 FBXL2 相互连接的 FUNDC1 在 K136 处被 SUMO1 修饰。FBXL2、ASN-205、GLN-204、ARG-235 和 GLN-237 与 FUNDC1 的 ASP-15、ASP-16、GLU-25 和 ARG-29 形成氢键,长度分别为 2.3、3.1、2.9、2.3 和 2.9 Å。在哮喘小鼠模型中,诱导 FBXL2 可降低 Sh-FUNDC1 对哮喘的影响。总之,FUNDC1 通过 FBXL2/AR/GPX4 信号通路在 K136 处的 SUMO1 阻止了哮喘气道上皮细胞的铁突变。FUNDC1 可能有益于哮喘或其他肺部疾病的治疗。
{"title":"FUNDC1 mediated mitochondria-dependent ferroptosis of epithelial cells in model of asthma by FBXL2/ar/GPX4 signaling pathway of SUMO1 at K136.","authors":"Li Li, Xingxing Zhu, Jiayi Zhao, Jiaying Yuan, Haoran Ni, Jian Fan, Yi Zhang, Yahong Sun, Yan Shang","doi":"10.1080/08830185.2024.2406853","DOIUrl":"https://doi.org/10.1080/08830185.2024.2406853","url":null,"abstract":"<p><p>This study aimed to explore the critical role of FUNDC1 on epithelial cells in model of asthma. Patients with asthma and normal healthy volunteers were obtained from our hospital. The serum of FUNDC1 mRNA expression was down-regulated in patients with asthma. Meanwhile, the serum of FUNDC1 mRNA expression was positive correlation with IgE and anti-HDM IgE protein. FUNDC1 expression in lung tissue of mice model was decreased in mice model of asthma. Sh-FUNDC1 enhanced asthma in mice model of asthma. FUNDC1 up-regulation reduced IL-4, IL-5, IL-10 and IL-13 activity levels <i>in vitro</i> model of asthma.FUNDC1 down-regulation promoted IL-4, IL-5, IL-10 and IL-13 activity levels <i>in vitro</i> model of asthma. FUNDC1 reduced ferroptosis of epithelial cells in model of asthma through the inhibition of mitochondrial damage. FUNDC1 induced FBXL2 and AR protein expression in model of asthma. FUNDC1 interlinked with FBXL2 is modified by SUMO1 at K136. FBXL2, ASN-205, GLN-204, ARG-235, and GLN-237 form hydrogen bonds with FUNDC1's ASP-15, ASP-16, GLU-25, and ARG-29, with lengths of 2.3, 3.1, 2.9, 2.3, and 2.9 Å, respectively. The induction of FBXL2 reduced the effects of Sh-FUNDC1 on asthma in mice model of asthma. The inhibition of AR reduced the effects of Sh-FUNDC1 on asthma in mice model of asthma Overall, FUNDC1 prevents ferroptosis of airway epithelial cells of asthma through FBXL2/AR/GPX4 signaling pathway of SUMO1 at K136. FUNDC1 might benefit the treatment of asthma or other pulmonary disease.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1-13"},"PeriodicalIF":4.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142346688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Re-inventing traditional aluminum-based adjuvants: Insight into a century of advancements. 重新发明传统铝基佐剂:洞察一个世纪的进步。
IF 4.3 4区 医学 Q2 IMMUNOLOGY Pub Date : 2024-09-23 DOI: 10.1080/08830185.2024.2404095
Himanshu Gogoi, Rajesh Mani, Rakesh Bhatnagar

Aluminum salt-based adjuvants like alum, alhydrogel and Adju-Phos are by far the most favored clinically approved vaccine adjuvants. They have demonstrated excellent safety profile and currently used in vaccines against diphtheria, tetanus, pertussis, hepatitis B, anthrax etc. These vaccinations cause minimal side effects like local inflammation at the injection site. Aluminum salt-based adjuvants primarily stimulate CD4+ T cells and B cell mediated Th2 immune response leading to generate a robust antibody response. In this review article, we have compiled the role of physio-chemical role of the two commonly used aluminum salt-based adjuvants alhydrogel and Adju-Phos, and the effect of surface properties, buffer composition, and adjuvant dosage on the immune response. After being studied for almost a century, researchers have come up with various mechanism by which these aluminum adjuvants activate the immune system. Firstly, we have covered the initial works of Glenny and his "repository effect" which paved the work for his successors to explore the involvement of cytokines, chemokines, recruitment of innate immune cells, enhanced antigen uptake by antigen presenting cells, and formation of NLRP3 inflammasome complex in mediating the immune response. It has been reported that aluminum adjuvants activate multiple immunological pathways which synergistically activates the immune system. We later discuss the recent developments in nanotechnology-based preparations of next generation aluminum based adjuvants which has enabled precise size control and morphology of the traditional aluminum adjuvants thereby manipulating the immune response as per our desire.

铝盐佐剂,如明矾、水凝胶和 Adju-Phos,是迄今为止临床上最常用的疫苗佐剂。这些佐剂具有极佳的安全性,目前已用于白喉、破伤风、百日咳、乙型肝炎、炭疽等疫苗。这些疫苗对注射部位的局部发炎等副作用极小。铝盐佐剂主要刺激 CD4+ T 细胞和 B 细胞介导的 Th2 免疫反应,从而产生强大的抗体反应。在这篇综述文章中,我们梳理了两种常用铝盐佐剂 alhydrogel 和 Adju-Phos 的物理化学作用,以及表面特性、缓冲成分和佐剂剂量对免疫反应的影响。经过近一个世纪的研究,研究人员提出了这些铝佐剂激活免疫系统的各种机制。首先,我们介绍了格兰尼和他的 "储存库效应 "的初步研究成果,这为后继者探索细胞因子、趋化因子、先天性免疫细胞的招募、抗原呈递细胞对抗原摄取的增强以及 NLRP3 炎症小体复合物的形成参与免疫反应的机制奠定了基础。据报道,铝佐剂可激活多种免疫途径,从而协同激活免疫系统。我们稍后将讨论基于纳米技术制备下一代铝基佐剂的最新进展,这种技术可以精确控制传统铝佐剂的尺寸和形态,从而按照我们的愿望操纵免疫反应。
{"title":"Re-inventing traditional aluminum-based adjuvants: Insight into a century of advancements.","authors":"Himanshu Gogoi, Rajesh Mani, Rakesh Bhatnagar","doi":"10.1080/08830185.2024.2404095","DOIUrl":"https://doi.org/10.1080/08830185.2024.2404095","url":null,"abstract":"<p><p>Aluminum salt-based adjuvants like alum, alhydrogel and Adju-Phos are by far the most favored clinically approved vaccine adjuvants. They have demonstrated excellent safety profile and currently used in vaccines against diphtheria, tetanus, pertussis, hepatitis B, anthrax etc. These vaccinations cause minimal side effects like local inflammation at the injection site. Aluminum salt-based adjuvants primarily stimulate CD4<sup>+</sup> T cells and B cell mediated Th2 immune response leading to generate a robust antibody response. In this review article, we have compiled the role of physio-chemical role of the two commonly used aluminum salt-based adjuvants alhydrogel and Adju-Phos, and the effect of surface properties, buffer composition, and adjuvant dosage on the immune response. After being studied for almost a century, researchers have come up with various mechanism by which these aluminum adjuvants activate the immune system. Firstly, we have covered the initial works of Glenny and his \"repository effect\" which paved the work for his successors to explore the involvement of cytokines, chemokines, recruitment of innate immune cells, enhanced antigen uptake by antigen presenting cells, and formation of NLRP3 inflammasome complex in mediating the immune response. It has been reported that aluminum adjuvants activate multiple immunological pathways which synergistically activates the immune system. We later discuss the recent developments in nanotechnology-based preparations of next generation aluminum based adjuvants which has enabled precise size control and morphology of the traditional aluminum adjuvants thereby manipulating the immune response as per our desire.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1-24"},"PeriodicalIF":4.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The m6A methyltransferase METTL3 modifies Kcnk6 promoting on inflammation associated carcinogenesis is essential for colon homeostasis and defense system through histone lactylation dependent YTHDF2 binding. m6A甲基转移酶METTL3通过组蛋白乳酰化依赖性YTHDF2结合,修饰Kcnk6,促进与炎症相关的癌变,对结肠稳态和防御系统至关重要。
IF 5 4区 医学 Q2 IMMUNOLOGY Pub Date : 2024-09-13 DOI: 10.1080/08830185.2024.2401358
Xiaolong Yuan,Qiong Wang,Jun Zhao,Haitang Xie,Zhichen Pu
Inflammation induces tumor formation and plays a crucial role in tumor progression and prognosis. KCNK6, by regulating K(+) efflux to reduce NLRP3 Inflammasome-induced lung injury, relaxes the aorta. This study aims to elucidate the effects and biological mechanism of KCNK6 in inflammation-associated carcinogenesis, which may be essential for colon homeostasis and the defense system. To induce colitis, mice were given 3.0% Dextran Sodium Sulfate (DSS) in their drinking water for 7 days. The Azoxymethane (AOM) +DSS method was used to induce colon cancer in the mice model. Bone marrow-derived macrophages (BMDM) from Kcnk6-/- mice, AW264.7 cells, and human colon cancer HCT116 and Caco2 cells were used as in vitro models. The loss of Kcnk6 prevented spontaneous colitis and restored mucosal integrity and homeostatic molecules. Additionally, the loss of Kcnk6 reduced the severity of AOM/DSS-induced carcinogenesis. Kcnk6 promoted cell viability and proliferation in HCT-116 or Caco-2 cells. The loss of Kcnk6 inhibited the levels of inflammatory factors in BMDM cells. Kcnk6 accelerated potassium channel activity, inducing NLRP3 inflammasome activation. METTL3-mediated m6A modification increased Kcnk6 stability in a YTHDF2-dependent manner. Histone lactylation activated the transcription of YTHDF2/Kcnk6. Our study revealed the important role of Kcnk6 in inflammation-associated carcinogenesis progression. The m6A methyltransferase METTL3 and histone lactylation increased Kcnk6 stability in a YTHDF2-dependent manner, providing a potential strategy for inflammation-associated carcinogenesis or colorectal cancer therapy.
炎症会诱发肿瘤的形成,并在肿瘤的发展和预后中起着至关重要的作用。KCNK6 通过调节 K(+)外流减少 NLRP3 炎症体诱导的肺损伤,从而舒张主动脉。本研究旨在阐明 KCNK6 在炎症相关癌变中的作用和生物学机制,KCNK6 可能对结肠稳态和防御系统至关重要。为了诱发结肠炎,小鼠的饮用水中含有 3.0% 的右旋糖酐硫酸钠(DSS),持续 7 天。采用偶氮甲烷(AOM)+DSS 法诱导小鼠模型中的结肠癌。Kcnk6-/-小鼠的骨髓衍生巨噬细胞(BMDM)、AW264.7细胞以及人结肠癌HCT116和Caco2细胞被用作体外模型。缺失 Kcnk6 可预防自发性结肠炎,并恢复粘膜完整性和平衡分子。此外,Kcnk6的缺失还降低了AOM/DSS诱导的癌变的严重程度。Kcnk6能促进HCT-116或Caco-2细胞的活力和增殖。Kcnk6 的缺失抑制了 BMDM 细胞中的炎症因子水平。Kcnk6 加快了钾通道的活性,诱导了 NLRP3 炎性体的激活。METTL3 介导的 m6A 修饰以 YTHDF2 依赖性方式增加了 Kcnk6 的稳定性。组蛋白乳酰化激活了 YTHDF2/Kcnk6 的转录。我们的研究揭示了Kcnk6在炎症相关癌变过程中的重要作用。m6A甲基转移酶METTL3和组蛋白乳化以YTHDF2依赖的方式增加了Kcnk6的稳定性,为炎症相关癌变或结直肠癌治疗提供了一种潜在的策略。
{"title":"The m6A methyltransferase METTL3 modifies Kcnk6 promoting on inflammation associated carcinogenesis is essential for colon homeostasis and defense system through histone lactylation dependent YTHDF2 binding.","authors":"Xiaolong Yuan,Qiong Wang,Jun Zhao,Haitang Xie,Zhichen Pu","doi":"10.1080/08830185.2024.2401358","DOIUrl":"https://doi.org/10.1080/08830185.2024.2401358","url":null,"abstract":"Inflammation induces tumor formation and plays a crucial role in tumor progression and prognosis. KCNK6, by regulating K(+) efflux to reduce NLRP3 Inflammasome-induced lung injury, relaxes the aorta. This study aims to elucidate the effects and biological mechanism of KCNK6 in inflammation-associated carcinogenesis, which may be essential for colon homeostasis and the defense system. To induce colitis, mice were given 3.0% Dextran Sodium Sulfate (DSS) in their drinking water for 7 days. The Azoxymethane (AOM) +DSS method was used to induce colon cancer in the mice model. Bone marrow-derived macrophages (BMDM) from Kcnk6-/- mice, AW264.7 cells, and human colon cancer HCT116 and Caco2 cells were used as in vitro models. The loss of Kcnk6 prevented spontaneous colitis and restored mucosal integrity and homeostatic molecules. Additionally, the loss of Kcnk6 reduced the severity of AOM/DSS-induced carcinogenesis. Kcnk6 promoted cell viability and proliferation in HCT-116 or Caco-2 cells. The loss of Kcnk6 inhibited the levels of inflammatory factors in BMDM cells. Kcnk6 accelerated potassium channel activity, inducing NLRP3 inflammasome activation. METTL3-mediated m6A modification increased Kcnk6 stability in a YTHDF2-dependent manner. Histone lactylation activated the transcription of YTHDF2/Kcnk6. Our study revealed the important role of Kcnk6 in inflammation-associated carcinogenesis progression. The m6A methyltransferase METTL3 and histone lactylation increased Kcnk6 stability in a YTHDF2-dependent manner, providing a potential strategy for inflammation-associated carcinogenesis or colorectal cancer therapy.","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"4 1","pages":"1-16"},"PeriodicalIF":5.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunometabolism in cancer: A journey into innate and adaptive cells. 癌症中的免疫代谢:先天性和适应性细胞之旅。
IF 4.3 4区 医学 Q2 IMMUNOLOGY Pub Date : 2024-09-12 DOI: 10.1080/08830185.2024.2401353
Alexia Nedel Sant'Ana, Camila Kehl Dias, Sacha Krolow E Silva, Fabrício Figueiró

In recent years, mostly spanning the past decade, the concept of immunometabolism has ushered with a novel perspective on carcinogenesis, tumor progression, and tumor response to therapy. It has become clear that the metabolic state of immune cells plays a significant role in shaping their antitumor or protumor activities within the cancer microenvironment. Consequently, the examination of tumor metabolic heterogeneity, including an exploration of immunometabolism, proves indispensable for enhancing prognostic tools and advancing the quest for personalized treatments. Here we have delved into how metabolic reprogramming profoundly influences the acquisition and maintenance of functional states, spanning from effector and cytotoxic profiles to regulatory and immunosuppressive phenotypes in both innate and adaptive immunity. These alterations wield considerable influence over tumor evolution and affect the outcome of cancer. Furthermore, we explore some of the cellular signaling mechanisms that underpin the metabolic and phenotypic flexibility of immune cells in response to external stimuli.

近年来,主要是近十年来,免疫代谢的概念为研究癌变、肿瘤进展和肿瘤对治疗的反应提供了一个新的视角。很明显,免疫细胞的代谢状态对其在癌症微环境中的抗肿瘤或原肿瘤活动起着重要作用。因此,对肿瘤代谢异质性的研究,包括对免疫代谢的探索,对于增强预后工具和推进个性化治疗的探索是不可或缺的。在这里,我们深入研究了代谢重编程如何深刻影响功能状态的获得和维持,包括先天性免疫和适应性免疫中的效应和细胞毒性特征、调节和免疫抑制表型。这些改变对肿瘤的进化具有相当大的影响,并影响癌症的预后。此外,我们还探讨了一些细胞信号传导机制,这些机制是免疫细胞对外界刺激做出反应时的新陈代谢和表型灵活性的基础。
{"title":"Immunometabolism in cancer: A journey into innate and adaptive cells.","authors":"Alexia Nedel Sant'Ana, Camila Kehl Dias, Sacha Krolow E Silva, Fabrício Figueiró","doi":"10.1080/08830185.2024.2401353","DOIUrl":"https://doi.org/10.1080/08830185.2024.2401353","url":null,"abstract":"<p><p>In recent years, mostly spanning the past decade, the concept of immunometabolism has ushered with a novel perspective on carcinogenesis, tumor progression, and tumor response to therapy. It has become clear that the metabolic state of immune cells plays a significant role in shaping their antitumor or protumor activities within the cancer microenvironment. Consequently, the examination of tumor metabolic heterogeneity, including an exploration of immunometabolism, proves indispensable for enhancing prognostic tools and advancing the quest for personalized treatments. Here we have delved into how metabolic reprogramming profoundly influences the acquisition and maintenance of functional states, spanning from effector and cytotoxic profiles to regulatory and immunosuppressive phenotypes in both innate and adaptive immunity. These alterations wield considerable influence over tumor evolution and affect the outcome of cancer. Furthermore, we explore some of the cellular signaling mechanisms that underpin the metabolic and phenotypic flexibility of immune cells in response to external stimuli.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1-14"},"PeriodicalIF":4.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The molecular landscape of T cell exhaustion in the tumor microenvironment and reinvigoration strategies. 肿瘤微环境中 T 细胞衰竭的分子图谱和重振策略。
IF 5 4区 医学 Q2 IMMUNOLOGY Pub Date : 2024-09-11 DOI: 10.1080/08830185.2024.2401352
Mahsa Heidari-Foroozan,Alaleh Rezalotfi,Nima Rezaei
Immunotherapy has emerged as a promising therapeutic approach for cancer treatment by harnessing the immune system to target cancer cells. However, the efficacy of immunotherapy is hindered by the tumor microenvironment (TME), comprising regulatory T cells (Tregs), macrophages, myeloid-derived suppressor cells (MDSCs), neutrophils, soluble factors (TGF-β, IL-35, IL-10), and hypoxia. These components interact with inhibitory receptors (IRs) on T cells, leading to alterations in T cell transcriptomes, epigenomes, and metabolism, ultimately resulting in T cell exhaustion and compromising the effectiveness of immunotherapy. T cell exhaustion occurs in two phases: pre-exhaustion and exhaustion. Pre-exhausted T cells exhibit reversibility and distinct molecular properties compared to terminally exhausted T cells. Understanding these differences is crucial for designing effective interventions. This comprehensive review summarizes the characteristics of pre-exhausted and exhausted T cells and elucidates the influence of TME components on T cell activity, transcriptomes, epigenomes, and metabolism, ultimately driving T cell exhaustion in cancer. Additionally, potential intervention strategies for reversing exhaustion are discussed. By gaining insights into the mechanisms underlying T cell exhaustion and the impact of the TME, this review aims to inform the development of innovative approaches for combating T cell exhaustion and enhancing the efficacy of immunotherapy in cancer treatment.
通过利用免疫系统靶向癌细胞,免疫疗法已成为一种前景广阔的癌症治疗方法。然而,免疫疗法的疗效受到肿瘤微环境(TME)的阻碍,其中包括调节性T细胞(Tregs)、巨噬细胞、髓源抑制细胞(MDSCs)、中性粒细胞、可溶性因子(TGF-β、IL-35、IL-10)和缺氧。这些成分与 T 细胞上的抑制受体(IRs)相互作用,导致 T 细胞转录组、表观基因组和新陈代谢发生改变,最终导致 T 细胞衰竭,影响免疫疗法的效果。T 细胞衰竭分为两个阶段:衰竭前和衰竭。与末期衰竭的 T 细胞相比,衰竭前的 T 细胞表现出可逆性和独特的分子特性。了解这些差异对于设计有效的干预措施至关重要。这篇综合综述总结了衰竭前和衰竭T细胞的特征,阐明了TME成分对T细胞活性、转录组、表观基因组和新陈代谢的影响,最终推动了癌症中的T细胞衰竭。此外,还讨论了逆转衰竭的潜在干预策略。通过深入了解T细胞衰竭的内在机制和TME的影响,本综述旨在为开发创新方法提供信息,以应对T细胞衰竭并提高免疫疗法在癌症治疗中的疗效。
{"title":"The molecular landscape of T cell exhaustion in the tumor microenvironment and reinvigoration strategies.","authors":"Mahsa Heidari-Foroozan,Alaleh Rezalotfi,Nima Rezaei","doi":"10.1080/08830185.2024.2401352","DOIUrl":"https://doi.org/10.1080/08830185.2024.2401352","url":null,"abstract":"Immunotherapy has emerged as a promising therapeutic approach for cancer treatment by harnessing the immune system to target cancer cells. However, the efficacy of immunotherapy is hindered by the tumor microenvironment (TME), comprising regulatory T cells (Tregs), macrophages, myeloid-derived suppressor cells (MDSCs), neutrophils, soluble factors (TGF-β, IL-35, IL-10), and hypoxia. These components interact with inhibitory receptors (IRs) on T cells, leading to alterations in T cell transcriptomes, epigenomes, and metabolism, ultimately resulting in T cell exhaustion and compromising the effectiveness of immunotherapy. T cell exhaustion occurs in two phases: pre-exhaustion and exhaustion. Pre-exhausted T cells exhibit reversibility and distinct molecular properties compared to terminally exhausted T cells. Understanding these differences is crucial for designing effective interventions. This comprehensive review summarizes the characteristics of pre-exhausted and exhausted T cells and elucidates the influence of TME components on T cell activity, transcriptomes, epigenomes, and metabolism, ultimately driving T cell exhaustion in cancer. Additionally, potential intervention strategies for reversing exhaustion are discussed. By gaining insights into the mechanisms underlying T cell exhaustion and the impact of the TME, this review aims to inform the development of innovative approaches for combating T cell exhaustion and enhancing the efficacy of immunotherapy in cancer treatment.","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"57 1","pages":"1-22"},"PeriodicalIF":5.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Reviews of Immunology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1