Macrophages are the primary targets of mycobacterial infection, which plays crucial roles both in nonspecific defence (innate immunity) as well as specific defence mechanisms (adaptive immunity) by secreting various cytokines, antimicrobial mediators and presenting antigens to T-cells. Sequencing of the mycobacterial genome revealed that 10% of its coding ability is devoted to the Pro-Glu motif-containing (PE) and Pro-Pro-Glu motif-containing (PPE) family proteins. While the function of most of the genes belonging to the PE-PPE family initially remained unannotated, recent studies have shown that many proteins of this family play critical roles in bacterial growth and cell functions, and manipulation of host immune responses, indicating their potential roles in mycobacterial virulence. In this review, we have focussed on describing the immunological importance of particularly the PE group of proteins in the context of 'virulence' determinants and outcome of tuberculosis disease. Additionally, we have discussed about the roles of these proteins on host-pathogen-interaction and how some of these genes can be targeted which may help us in designing effective anti-TB therapeutics.
{"title":"Role of PE family of proteins in mycobacterial virulence: Potential on anti-TB vaccine and drug design.","authors":"Priyanka Dahiya, Manoj Kumar Bisht, Sangita Mukhopadhyay","doi":"10.1080/08830185.2025.2455161","DOIUrl":"https://doi.org/10.1080/08830185.2025.2455161","url":null,"abstract":"<p><p>Macrophages are the primary targets of mycobacterial infection, which plays crucial roles both in nonspecific defence (innate immunity) as well as specific defence mechanisms (adaptive immunity) by secreting various cytokines, antimicrobial mediators and presenting antigens to T-cells. Sequencing of the mycobacterial genome revealed that 10% of its coding ability is devoted to the Pro-Glu motif-containing (PE) and Pro-Pro-Glu motif-containing (PPE) family proteins. While the function of most of the genes belonging to the PE-PPE family initially remained unannotated, recent studies have shown that many proteins of this family play critical roles in bacterial growth and cell functions, and manipulation of host immune responses, indicating their potential roles in mycobacterial virulence. In this review, we have focussed on describing the immunological importance of particularly the PE group of proteins in the context of 'virulence' determinants and outcome of tuberculosis disease. Additionally, we have discussed about the roles of these proteins on host-pathogen-interaction and how some of these genes can be targeted which may help us in designing effective anti-TB therapeutics.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1-16"},"PeriodicalIF":4.3,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Heart failure (HF) causes structural and functional changes in the heart, with the pyroptosis-mediated inflammatory response as the core link in HF pathogenesis. E3 ubiquitin ligases participate in cardiovascular disease progression. Here, we explored the underlying molecular mechanisms of E3 ubiquitin ligase Smurf1 in governing HF.
Methods: HF rat/H9C2 cell models were established by doxorubicin intraperitoneal injections/hypoxia-reoxygenation (H/R), and treated with Smurf1 siRNA and oe-TRIB2 lentivirus plasmids or the NF-κB pathway inhibitor PDTC/si-smurf1, si-TRIB2, protease inhibitor MG132, or lysosomal inhibitor NH4Cl. The cardiac function/cardiac tissue pathological changes/fibrosis in HF rats were evaluated by echocardiography/H&E and Masson staining. GSDMD-N expression was determined by immunohistochemistry. Cell viability/lactate dehydrogenase (LDH) activity/IL-1β and IL-18 levels were measured by CCK-8/LDH kit/ELISA. The interaction between TRIB2 and Smurf1/TRIB2 ubiquitination levels was assessed by co-immunoprecipitation assay. The expression levels of Smurf1 and TRIB2 messenger RNA (mRNA) were determined by RT-qPCR. Levels of Smurf1/TRIB2/the NF-κB pathway-related factors/pyroptosis-related factors and TRIB2 mRNA were determined by Western blot/RT-qPCR.
Results: Smurf1 was highly expressed in H/R-induced H9C2 cells/HF rats, while its knockdown up-regulated TRIB2 and repressed the NF-κB pathway, reduced cardiomyocyte pyroptosis, and attenuated HF. Mechanistically, Smurf1 promoted TRIB2 degradation through an ubiquitin-dependent manner and activated the NF-κB pathway under H/R conditions. TRIB2 silencing annulled Smurf1 knockdown-regulated NF-κB pathway and cardiomyocyte pyroptosis. TRIB2 overexpression inactivated the NF-κB pathway and reduced cardiomyocyte pyroptosis, thus retarding HF.
Conclusion: Smurf1 was highly expressed in HF rats, which promoted TRIB2 ubiquitination degradation and activated the NF-κB pathway, thereby promoting cardiomyocyte pyroptosis in HF rats.
{"title":"E3 ubiquitin ligase Smurf1 promotes cardiomyocyte pyroptosis by mediating ubiquitin-dependent degradation of TRIB2 in a rat model of heart failure.","authors":"Wei Liu, Xin Cai, Shiying Duan, Jihua Shen, Jiayuan Wu, Zhengwei Zhou, Kaili Yu, Caihong He, Yuqin Wang","doi":"10.1080/08830185.2024.2434058","DOIUrl":"https://doi.org/10.1080/08830185.2024.2434058","url":null,"abstract":"<p><strong>Objective: </strong>Heart failure (HF) causes structural and functional changes in the heart, with the pyroptosis-mediated inflammatory response as the core link in HF pathogenesis. E3 ubiquitin ligases participate in cardiovascular disease progression. Here, we explored the underlying molecular mechanisms of E3 ubiquitin ligase Smurf1 in governing HF.</p><p><strong>Methods: </strong>HF rat/H9C2 cell models were established by doxorubicin intraperitoneal injections/hypoxia-reoxygenation (H/R), and treated with Smurf1 siRNA and oe-TRIB2 lentivirus plasmids or the NF-κB pathway inhibitor PDTC/si-smurf1, si-TRIB2, protease inhibitor MG132, or lysosomal inhibitor NH4Cl. The cardiac function/cardiac tissue pathological changes/fibrosis in HF rats were evaluated by echocardiography/H&E and Masson staining. GSDMD-N expression was determined by immunohistochemistry. Cell viability/lactate dehydrogenase (LDH) activity/IL-1β and IL-18 levels were measured by CCK-8/LDH kit/ELISA. The interaction between TRIB2 and Smurf1/TRIB2 ubiquitination levels was assessed by co-immunoprecipitation assay. The expression levels of Smurf1 and TRIB2 messenger RNA (mRNA) were determined by RT-qPCR. Levels of Smurf1/TRIB2/the NF-κB pathway-related factors/pyroptosis-related factors and TRIB2 mRNA were determined by Western blot/RT-qPCR.</p><p><strong>Results: </strong>Smurf1 was highly expressed in H/R-induced H9C2 cells/HF rats, while its knockdown up-regulated TRIB2 and repressed the NF-κB pathway, reduced cardiomyocyte pyroptosis, and attenuated HF. Mechanistically, Smurf1 promoted TRIB2 degradation through an ubiquitin-dependent manner and activated the NF-κB pathway under H/R conditions. TRIB2 silencing annulled Smurf1 knockdown-regulated NF-κB pathway and cardiomyocyte pyroptosis. TRIB2 overexpression inactivated the NF-κB pathway and reduced cardiomyocyte pyroptosis, thus retarding HF.</p><p><strong>Conclusion: </strong>Smurf1 was highly expressed in HF rats, which promoted TRIB2 ubiquitination degradation and activated the NF-κB pathway, thereby promoting cardiomyocyte pyroptosis in HF rats.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1-15"},"PeriodicalIF":4.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-09-23DOI: 10.1080/08830185.2024.2404095
Himanshu Gogoi, Rajesh Mani, Rakesh Bhatnagar
Aluminum salt-based adjuvants like alum, alhydrogel and Adju-Phos are by far the most favored clinically approved vaccine adjuvants. They have demonstrated excellent safety profile and currently used in vaccines against diphtheria, tetanus, pertussis, hepatitis B, anthrax etc. These vaccinations cause minimal side effects like local inflammation at the injection site. Aluminum salt-based adjuvants primarily stimulate CD4+ T cells and B cell mediated Th2 immune response leading to generate a robust antibody response. In this review article, we have compiled the role of physio-chemical role of the two commonly used aluminum salt-based adjuvants alhydrogel and Adju-Phos, and the effect of surface properties, buffer composition, and adjuvant dosage on the immune response. After being studied for almost a century, researchers have come up with various mechanism by which these aluminum adjuvants activate the immune system. Firstly, we have covered the initial works of Glenny and his "repository effect" which paved the work for his successors to explore the involvement of cytokines, chemokines, recruitment of innate immune cells, enhanced antigen uptake by antigen presenting cells, and formation of NLRP3 inflammasome complex in mediating the immune response. It has been reported that aluminum adjuvants activate multiple immunological pathways which synergistically activates the immune system. We later discuss the recent developments in nanotechnology-based preparations of next generation aluminum based adjuvants which has enabled precise size control and morphology of the traditional aluminum adjuvants thereby manipulating the immune response as per our desire.
铝盐佐剂,如明矾、水凝胶和 Adju-Phos,是迄今为止临床上最常用的疫苗佐剂。这些佐剂具有极佳的安全性,目前已用于白喉、破伤风、百日咳、乙型肝炎、炭疽等疫苗。这些疫苗对注射部位的局部发炎等副作用极小。铝盐佐剂主要刺激 CD4+ T 细胞和 B 细胞介导的 Th2 免疫反应,从而产生强大的抗体反应。在这篇综述文章中,我们梳理了两种常用铝盐佐剂 alhydrogel 和 Adju-Phos 的物理化学作用,以及表面特性、缓冲成分和佐剂剂量对免疫反应的影响。经过近一个世纪的研究,研究人员提出了这些铝佐剂激活免疫系统的各种机制。首先,我们介绍了格兰尼和他的 "储存库效应 "的初步研究成果,这为后继者探索细胞因子、趋化因子、先天性免疫细胞的招募、抗原呈递细胞对抗原摄取的增强以及 NLRP3 炎症小体复合物的形成参与免疫反应的机制奠定了基础。据报道,铝佐剂可激活多种免疫途径,从而协同激活免疫系统。我们稍后将讨论基于纳米技术制备下一代铝基佐剂的最新进展,这种技术可以精确控制传统铝佐剂的尺寸和形态,从而按照我们的愿望操纵免疫反应。
{"title":"Re-inventing traditional aluminum-based adjuvants: Insight into a century of advancements.","authors":"Himanshu Gogoi, Rajesh Mani, Rakesh Bhatnagar","doi":"10.1080/08830185.2024.2404095","DOIUrl":"10.1080/08830185.2024.2404095","url":null,"abstract":"<p><p>Aluminum salt-based adjuvants like alum, alhydrogel and Adju-Phos are by far the most favored clinically approved vaccine adjuvants. They have demonstrated excellent safety profile and currently used in vaccines against diphtheria, tetanus, pertussis, hepatitis B, anthrax etc. These vaccinations cause minimal side effects like local inflammation at the injection site. Aluminum salt-based adjuvants primarily stimulate CD4<sup>+</sup> T cells and B cell mediated Th2 immune response leading to generate a robust antibody response. In this review article, we have compiled the role of physio-chemical role of the two commonly used aluminum salt-based adjuvants alhydrogel and Adju-Phos, and the effect of surface properties, buffer composition, and adjuvant dosage on the immune response. After being studied for almost a century, researchers have come up with various mechanism by which these aluminum adjuvants activate the immune system. Firstly, we have covered the initial works of Glenny and his \"repository effect\" which paved the work for his successors to explore the involvement of cytokines, chemokines, recruitment of innate immune cells, enhanced antigen uptake by antigen presenting cells, and formation of NLRP3 inflammasome complex in mediating the immune response. It has been reported that aluminum adjuvants activate multiple immunological pathways which synergistically activates the immune system. We later discuss the recent developments in nanotechnology-based preparations of next generation aluminum based adjuvants which has enabled precise size control and morphology of the traditional aluminum adjuvants thereby manipulating the immune response as per our desire.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"58-81"},"PeriodicalIF":4.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-08DOI: 10.1080/08830185.2024.2411998
Tetiana Hourani, Amit Sharma, Rodney B Luwor, Adrian A Achuthan
TGF-β is a pivotal cytokine that orchestrates various aspects of cancer progression, including tumor growth, metastasis, and immune evasion. In this review, we present a comprehensive overview of the multifaceted role of transforming growth factor β (TGF-β) in cancer biology, focusing on its intricate interactions with monocytes and macrophages within the tumor microenvironment (TME). We specifically discuss how TGF-β modulates monocyte and macrophage activities, leading to immunosuppression and tumor progression. We conclude with the current translational and clinical efforts targeting TGF-β, recognizing the promising role of this strategy in immunooncology.
{"title":"Transforming growth factor-β in tumor microenvironment: Understanding its impact on monocytes and macrophages for its targeting.","authors":"Tetiana Hourani, Amit Sharma, Rodney B Luwor, Adrian A Achuthan","doi":"10.1080/08830185.2024.2411998","DOIUrl":"10.1080/08830185.2024.2411998","url":null,"abstract":"<p><p>TGF-β is a pivotal cytokine that orchestrates various aspects of cancer progression, including tumor growth, metastasis, and immune evasion. In this review, we present a comprehensive overview of the multifaceted role of transforming growth factor β (TGF-β) in cancer biology, focusing on its intricate interactions with monocytes and macrophages within the tumor microenvironment (TME). We specifically discuss how TGF-β modulates monocyte and macrophage activities, leading to immunosuppression and tumor progression. We conclude with the current translational and clinical efforts targeting TGF-β, recognizing the promising role of this strategy in immunooncology.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"82-97"},"PeriodicalIF":4.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-14DOI: 10.1080/08830185.2024.2415688
Mina Dadkhah, Mohammadreza Sharifi
Because of numerous stress signals, intracellular protein complexes are called inflammasomes. They function as catalysts for the proteolytic transformation of pro-interleukin into the active form of interleukin. Inflammasomes can promote a type of cell death process known as pyroptosis. The NLRP3 inflammasome, comprised of the NLRP3 protein, procaspase-1, and ASC, tightly regulates inflammation. The NLRP3 inflammasome is activated by a variety of stimuli, and several molecular and cellular events, such as ion influx, mitochondrial dysfunction, reactive oxygen species production, and lysosomal damage have been shown to trigger its activation. Inflammation plays a major role in almost all types of human diseases. The NLRP3 inflammasome has been the most widely studied and plays an important pathogenic role in various inflammatory pathologies. This review briefly presents the basic features of NLRP3 inflammasome and their mechanisms of activation and regulation. In addition, recent studies report the role of NLRP3 inflammasome in several diseases have been summarized.
{"title":"The NLRP3 inflammasome: Mechanisms of activation, regulation, and role in diseases.","authors":"Mina Dadkhah, Mohammadreza Sharifi","doi":"10.1080/08830185.2024.2415688","DOIUrl":"10.1080/08830185.2024.2415688","url":null,"abstract":"<p><p>Because of numerous stress signals, intracellular protein complexes are called inflammasomes. They function as catalysts for the proteolytic transformation of pro-interleukin into the active form of interleukin. Inflammasomes can promote a type of cell death process known as pyroptosis. The NLRP3 inflammasome, comprised of the NLRP3 protein, procaspase-1, and ASC, tightly regulates inflammation. The NLRP3 inflammasome is activated by a variety of stimuli, and several molecular and cellular events, such as ion influx, mitochondrial dysfunction, reactive oxygen species production, and lysosomal damage have been shown to trigger its activation. Inflammation plays a major role in almost all types of human diseases. The NLRP3 inflammasome has been the most widely studied and plays an important pathogenic role in various inflammatory pathologies. This review briefly presents the basic features of NLRP3 inflammasome and their mechanisms of activation and regulation. In addition, recent studies report the role of NLRP3 inflammasome in several diseases have been summarized.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"98-111"},"PeriodicalIF":4.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, mostly spanning the past decade, the concept of immunometabolism has ushered with a novel perspective on carcinogenesis, tumor progression, and tumor response to therapy. It has become clear that the metabolic state of immune cells plays a significant role in shaping their antitumor or protumor activities within the cancer microenvironment. Consequently, the examination of tumor metabolic heterogeneity, including an exploration of immunometabolism, proves indispensable for enhancing prognostic tools and advancing the quest for personalized treatments. Here we have delved into how metabolic reprogramming profoundly influences the acquisition and maintenance of functional states, spanning from effector and cytotoxic profiles to regulatory and immunosuppressive phenotypes in both innate and adaptive immunity. These alterations wield considerable influence over tumor evolution and affect the outcome of cancer. Furthermore, we explore some of the cellular signaling mechanisms that underpin the metabolic and phenotypic flexibility of immune cells in response to external stimuli.
{"title":"Immunometabolism in cancer: A journey into innate and adaptive cells.","authors":"Alexia Nedel Sant'Ana, Camila Kehl Dias, Sacha Krolow E Silva, Fabrício Figueiró","doi":"10.1080/08830185.2024.2401353","DOIUrl":"10.1080/08830185.2024.2401353","url":null,"abstract":"<p><p>In recent years, mostly spanning the past decade, the concept of immunometabolism has ushered with a novel perspective on carcinogenesis, tumor progression, and tumor response to therapy. It has become clear that the metabolic state of immune cells plays a significant role in shaping their antitumor or protumor activities within the cancer microenvironment. Consequently, the examination of tumor metabolic heterogeneity, including an exploration of immunometabolism, proves indispensable for enhancing prognostic tools and advancing the quest for personalized treatments. Here we have delved into how metabolic reprogramming profoundly influences the acquisition and maintenance of functional states, spanning from effector and cytotoxic profiles to regulatory and immunosuppressive phenotypes in both innate and adaptive immunity. These alterations wield considerable influence over tumor evolution and affect the outcome of cancer. Furthermore, we explore some of the cellular signaling mechanisms that underpin the metabolic and phenotypic flexibility of immune cells in response to external stimuli.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"17-30"},"PeriodicalIF":4.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-09-25DOI: 10.1080/08830185.2024.2406853
Li Li, Xingxing Zhu, Jiayi Zhao, Jiaying Yuan, Haoran Ni, Jian Fan, Yi Zhang, Yahong Sun, Yan Shang
This study aimed to explore the critical role of FUNDC1 on epithelial cells in model of asthma. Patients with asthma and normal healthy volunteers were obtained from our hospital. The serum of FUNDC1 mRNA expression was down-regulated in patients with asthma. Meanwhile, the serum of FUNDC1 mRNA expression was positive correlation with IgE and anti-HDM IgE protein. FUNDC1 expression in lung tissue of mice model was decreased in mice model of asthma. Sh-FUNDC1 enhanced asthma in mice model of asthma. FUNDC1 up-regulation reduced IL-4, IL-5, IL-10 and IL-13 activity levels in vitro model of asthma.FUNDC1 down-regulation promoted IL-4, IL-5, IL-10 and IL-13 activity levels in vitro model of asthma. FUNDC1 reduced ferroptosis of epithelial cells in model of asthma through the inhibition of mitochondrial damage. FUNDC1 induced FBXL2 and AR protein expression in model of asthma. FUNDC1 interlinked with FBXL2 is modified by SUMO1 at K136. FBXL2, ASN-205, GLN-204, ARG-235, and GLN-237 form hydrogen bonds with FUNDC1's ASP-15, ASP-16, GLU-25, and ARG-29, with lengths of 2.3, 3.1, 2.9, 2.3, and 2.9 Å, respectively. The induction of FBXL2 reduced the effects of Sh-FUNDC1 on asthma in mice model of asthma. The inhibition of AR reduced the effects of Sh-FUNDC1 on asthma in mice model of asthma Overall, FUNDC1 prevents ferroptosis of airway epithelial cells of asthma through FBXL2/AR/GPX4 signaling pathway of SUMO1 at K136. FUNDC1 might benefit the treatment of asthma or other pulmonary disease.
{"title":"FUNDC1 mediated mitochondria-dependent ferroptosis of epithelial cells in model of asthma by FBXL2/ar/GPX4 signaling pathway of SUMO1 at K136.","authors":"Li Li, Xingxing Zhu, Jiayi Zhao, Jiaying Yuan, Haoran Ni, Jian Fan, Yi Zhang, Yahong Sun, Yan Shang","doi":"10.1080/08830185.2024.2406853","DOIUrl":"10.1080/08830185.2024.2406853","url":null,"abstract":"<p><p>This study aimed to explore the critical role of FUNDC1 on epithelial cells in model of asthma. Patients with asthma and normal healthy volunteers were obtained from our hospital. The serum of FUNDC1 mRNA expression was down-regulated in patients with asthma. Meanwhile, the serum of FUNDC1 mRNA expression was positive correlation with IgE and anti-HDM IgE protein. FUNDC1 expression in lung tissue of mice model was decreased in mice model of asthma. Sh-FUNDC1 enhanced asthma in mice model of asthma. FUNDC1 up-regulation reduced IL-4, IL-5, IL-10 and IL-13 activity levels <i>in vitro</i> model of asthma.FUNDC1 down-regulation promoted IL-4, IL-5, IL-10 and IL-13 activity levels <i>in vitro</i> model of asthma. FUNDC1 reduced ferroptosis of epithelial cells in model of asthma through the inhibition of mitochondrial damage. FUNDC1 induced FBXL2 and AR protein expression in model of asthma. FUNDC1 interlinked with FBXL2 is modified by SUMO1 at K136. FBXL2, ASN-205, GLN-204, ARG-235, and GLN-237 form hydrogen bonds with FUNDC1's ASP-15, ASP-16, GLU-25, and ARG-29, with lengths of 2.3, 3.1, 2.9, 2.3, and 2.9 Å, respectively. The induction of FBXL2 reduced the effects of Sh-FUNDC1 on asthma in mice model of asthma. The inhibition of AR reduced the effects of Sh-FUNDC1 on asthma in mice model of asthma Overall, FUNDC1 prevents ferroptosis of airway epithelial cells of asthma through FBXL2/AR/GPX4 signaling pathway of SUMO1 at K136. FUNDC1 might benefit the treatment of asthma or other pulmonary disease.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"45-57"},"PeriodicalIF":4.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142346688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-21DOI: 10.1080/08830185.2024.2443420
Supratim Ghosh, Ankita Chatterjee, Arindam Maitra
Host immunity helps the body to fight against COVID-19. Single-cell transcriptomics has provided the scope of investigating cellular and molecular underpinnings of host immune response against SARS-CoV-2 infection at high resolution. In this review, we have systematically described the virus-induced dysregulation of relative abundance as well as molecular behavior of each innate and adaptive immune cell type and cell state during COVID-19 infection and for different vaccinations, based on single-cell studies published in last three-four years. Identification and characterization of these disease-associated specific cell populations might help to design better, efficient, and targeted therapeutic avenues.
{"title":"An insight into COVID-19 host immunity at single-cell resolution.","authors":"Supratim Ghosh, Ankita Chatterjee, Arindam Maitra","doi":"10.1080/08830185.2024.2443420","DOIUrl":"https://doi.org/10.1080/08830185.2024.2443420","url":null,"abstract":"<p><p>Host immunity helps the body to fight against COVID-19. Single-cell transcriptomics has provided the scope of investigating cellular and molecular underpinnings of host immune response against SARS-CoV-2 infection at high resolution. In this review, we have systematically described the virus-induced dysregulation of relative abundance as well as molecular behavior of each innate and adaptive immune cell type and cell state during COVID-19 infection and for different vaccinations, based on single-cell studies published in last three-four years. Identification and characterization of these disease-associated specific cell populations might help to design better, efficient, and targeted therapeutic avenues.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1-16"},"PeriodicalIF":4.3,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-21DOI: 10.1080/08830185.2024.2443423
Yuliya V Perfilyeva, Arthur D Aquino, Maxim A Borodin, Aikyn Kali, Nurshat Abdolla, Yekaterina O Ostapchuk, Raikhan Tleulieva, Anastassiya V Perfilyeva, Nurlan T Jainakbayev, Kamalidin O Sharipov, Nikolai N Belyaev
Preventive vaccination is a crucial strategy for controlling and preventing infectious diseases, offering both effectiveness and cost-efficiency. However, despite the widespread success of vaccination programs, there are still certain population groups who struggle to mount adequate responses to immunization. These at-risk groups include but are not restricted to the elderly, overweight individuals, individuals with chronic infections and cancer patients. All of these groups are characterized by persistent chronic inflammation. Recent studies have demonstrated that one of the key players in immune regulation and the promotion of chronic inflammation are myeloid-derived suppressor cells (MDSCs). These cells possess a wide range of immunosuppressive mechanisms and are able to dampen immune responses in both antigen-specific and antigen-nonspecific manner, thus contributing to the establishment and maintenance of an inflammatory environment. Given their pivotal role in immune modulation, there is growing interest in understanding how MDSCs may influence the efficacy of vaccines, particularly in vulnerable populations. In this narrative review, we discuss whether MDSCs are able to regulate vaccine-induced immunity and whether their suppression can potentially enhance vaccine efficacy in vulnerable populations.
{"title":"Can interventions targeting MDSCs improve the outcome of vaccination in vulnerable populations?","authors":"Yuliya V Perfilyeva, Arthur D Aquino, Maxim A Borodin, Aikyn Kali, Nurshat Abdolla, Yekaterina O Ostapchuk, Raikhan Tleulieva, Anastassiya V Perfilyeva, Nurlan T Jainakbayev, Kamalidin O Sharipov, Nikolai N Belyaev","doi":"10.1080/08830185.2024.2443423","DOIUrl":"https://doi.org/10.1080/08830185.2024.2443423","url":null,"abstract":"<p><p>Preventive vaccination is a crucial strategy for controlling and preventing infectious diseases, offering both effectiveness and cost-efficiency. However, despite the widespread success of vaccination programs, there are still certain population groups who struggle to mount adequate responses to immunization. These at-risk groups include but are not restricted to the elderly, overweight individuals, individuals with chronic infections and cancer patients. All of these groups are characterized by persistent chronic inflammation. Recent studies have demonstrated that one of the key players in immune regulation and the promotion of chronic inflammation are myeloid-derived suppressor cells (MDSCs). These cells possess a wide range of immunosuppressive mechanisms and are able to dampen immune responses in both antigen-specific and antigen-nonspecific manner, thus contributing to the establishment and maintenance of an inflammatory environment. Given their pivotal role in immune modulation, there is growing interest in understanding how MDSCs may influence the efficacy of vaccines, particularly in vulnerable populations. In this narrative review, we discuss whether MDSCs are able to regulate vaccine-induced immunity and whether their suppression can potentially enhance vaccine efficacy in vulnerable populations.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1-17"},"PeriodicalIF":4.3,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1080/08830185.2024.2431507
Yan-Jiao Chen, Cai-Tao Chen, Gabriel Shimizu Bassi, Yong-Qing Yang
Studies in murine experimental models have made significant contributions to the understanding of asthma pathophysiology and the discovery of innovative therapeutic approaches. Nonetheless, there is a plethora of options available for selecting mouse strains, sensitization methods, challenge routes and doses, as well as approaches to evaluating host response in murine asthma model protocols. Due to the diversity of models employed, comparing results across different studies proves exceedingly challenging. The study conducted a search of pertinent PubMed articles from 2022 to April 15th, 2024. After relevant publications had been selected, the characteristics of each study were extracted, including animal strains, animal sex, sensitization methods, challenge methods, and reported outcome measures. The modeling parameters of Ovalbumin (OVA)-induced asthma model, and House Dust Mite-induced asthma model were analyzed. Additionally, we extracted data on the dose of OVA sensitization, alum administration, challenge OVA dose, and alum/sensitization OVA ratio from seven included studies. Subsequently, we conducted an analysis to determine the correlation between each of these factors and the lung resistance index (RI). This study presents an overview of the current mouse asthma models, offering valuable methodological guidance for researchers. Furthermore, this study highlights that certain parameters like sensitization dose, challenge dose, and so on, exert specific effects on the asthma lung resistance. However, there is a lack of standardized criteria and guidelines in this regard. The effects and underlying mechanisms of parameters on asthma responses remain unclear, necessitating further investigation into model parameters.
小鼠实验模型研究为了解哮喘病理生理学和发现创新治疗方法做出了重大贡献。然而,在选择小鼠品系、致敏方法、挑战途径和剂量以及评估小鼠哮喘模型方案中宿主反应的方法方面,存在着大量可供选择的方案。由于采用的模型多种多样,比较不同研究的结果极具挑战性。该研究对 2022 年至 2024 年 4 月 15 日期间的相关 PubMed 文章进行了搜索。筛选出相关文献后,提取了每项研究的特征,包括动物品系、动物性别、致敏方法、挑战方法和报告的结果测量。分析了卵清蛋白(OVA)诱导哮喘模型和屋尘螨诱导哮喘模型的建模参数。此外,我们还从纳入的 7 项研究中提取了有关 OVA 致敏剂量、明矾给药、OVA 挑战剂量和明矾/致敏 OVA 比率的数据。随后,我们进行了一项分析,以确定这些因素与肺阻力指数(RI)之间的相关性。本研究概述了目前的小鼠哮喘模型,为研究人员提供了宝贵的方法指导。此外,本研究还强调了某些参数,如致敏剂量、挑战剂量等,对哮喘肺阻力有特定的影响。然而,在这方面还缺乏标准化的标准和指南。参数对哮喘反应的影响和内在机制仍不清楚,因此有必要对模型参数进行进一步研究。
{"title":"Asthma research in mice: An overview of current models and their methodological variability.","authors":"Yan-Jiao Chen, Cai-Tao Chen, Gabriel Shimizu Bassi, Yong-Qing Yang","doi":"10.1080/08830185.2024.2431507","DOIUrl":"https://doi.org/10.1080/08830185.2024.2431507","url":null,"abstract":"<p><p>Studies in murine experimental models have made significant contributions to the understanding of asthma pathophysiology and the discovery of innovative therapeutic approaches. Nonetheless, there is a plethora of options available for selecting mouse strains, sensitization methods, challenge routes and doses, as well as approaches to evaluating host response in murine asthma model protocols. Due to the diversity of models employed, comparing results across different studies proves exceedingly challenging. The study conducted a search of pertinent PubMed articles from 2022 to April 15th, 2024. After relevant publications had been selected, the characteristics of each study were extracted, including animal strains, animal sex, sensitization methods, challenge methods, and reported outcome measures. The modeling parameters of Ovalbumin (OVA)-induced asthma model, and House Dust Mite-induced asthma model were analyzed. Additionally, we extracted data on the dose of OVA sensitization, alum administration, challenge OVA dose, and alum/sensitization OVA ratio from seven included studies. Subsequently, we conducted an analysis to determine the correlation between each of these factors and the lung resistance index (RI). This study presents an overview of the current mouse asthma models, offering valuable methodological guidance for researchers. Furthermore, this study highlights that certain parameters like sensitization dose, challenge dose, and so on, exert specific effects on the asthma lung resistance. However, there is a lack of standardized criteria and guidelines in this regard. The effects and underlying mechanisms of parameters on asthma responses remain unclear, necessitating further investigation into model parameters.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"1-14"},"PeriodicalIF":4.3,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142800798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}