Natural Fiber-Based Polymer Composites for Biomedical Applications.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-12-09 DOI:10.1080/09205063.2024.2435722
Emel Kuram
{"title":"Natural Fiber-Based Polymer Composites for Biomedical Applications.","authors":"Emel Kuram","doi":"10.1080/09205063.2024.2435722","DOIUrl":null,"url":null,"abstract":"<p><p>Natural fibers such as kenaf, sisal, ramie, jute, hemp, flax, coir, banana and bamboo have been employed in the production of biocomposites. A great strength-to-weight ratio, renewability and sustainability are some important properties of natural fibers. Biocomposites produced from natural fibers are employed in biomedical fields such as delivery of drug, orthopaedic applications, tissue engineering and wound dressing owing to their acceptability by the human body, moderate mechanical performance and environmental benefits. This study presents recent advances in the field of polymers and natural fiber-based polymer composites for potential biomedical applications. For this purpose, the properties of natural fibers are given and detailed examples from literature works for polymers and their composites used in biomedical applications are discussed.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-58"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2435722","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Natural fibers such as kenaf, sisal, ramie, jute, hemp, flax, coir, banana and bamboo have been employed in the production of biocomposites. A great strength-to-weight ratio, renewability and sustainability are some important properties of natural fibers. Biocomposites produced from natural fibers are employed in biomedical fields such as delivery of drug, orthopaedic applications, tissue engineering and wound dressing owing to their acceptability by the human body, moderate mechanical performance and environmental benefits. This study presents recent advances in the field of polymers and natural fiber-based polymer composites for potential biomedical applications. For this purpose, the properties of natural fibers are given and detailed examples from literature works for polymers and their composites used in biomedical applications are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学应用的天然纤维基聚合物复合材料。
天然纤维,如红麻、剑麻、苎麻、黄麻、大麻、亚麻、椰子、香蕉和竹子已被用于生产生物复合材料。强重比大、可再生性和可持续性是天然纤维的重要特性。由天然纤维制成的生物复合材料由于其人体可接受性、中等机械性能和环境效益,被应用于生物医学领域,如药物输送、骨科应用、组织工程和伤口敷料。本文介绍了聚合物和天然纤维基聚合物复合材料在生物医学领域的最新进展。为此,本文给出了天然纤维的特性,并从文献中详细介绍了聚合物及其复合材料在生物医学领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
期刊最新文献
Comparison of physico-chemical properties of different types of orthopedic acrylic cement. Designing & optimisation of dual Ca2+ and SO42- ionic cross-linked sericin/pectin microbeads using response surface methodology for colon-specific delivery. Multifunctional electrospun nanofiber films of polyacrylonitrile and polyvinyl alcohol incorporating rhamnose and therapeutic agents for enhanced healing of infected burn wounds. Molecular dynamics in pharmaceutical nanotechnology: simulating interactions and advancing applications. Gallic acid-guar gum and chitosan-based polyelectrolyte complex film exhibited enhanced wound healing in full-thickness excision wound model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1