{"title":"Hemodynamic effects of bifurcation and stenosis geometry on carotid arteries with different degrees of stenosis.","authors":"Yuxin Guo, Jianbao Yang, Junzhen Xue, Jingxi Yang, Siyu Liu, XueLian Zhang, Yixin Yao, Anlong Quan, Yang Zhang","doi":"10.1088/1361-6579/ad9c13","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Carotid artery stenosis (CAS) is a key factor in pathological conditions, such as thrombosis, which is closely linked to hemodynamic parameters. Existing research often focuses on analyzing the influence of geometric characteristics at the stenosis site, making it difficult to predict the effects of overall vascular geometry on hemodynamic parameters. The objective of this study is to comprehensively examine the influence of geometric morphology at different degrees of CAS and at bifurcation sites on hemodynamic parameters.<i>Approach.</i>A three-dimensional model is established using computed tomography angiography images, and eight geometric parameters of each patient are measured by MIMICS. Then, computational fluid dynamics is utilized to investigate 60 patients with varying degrees of stenosis (10%-95%). Time and grid tests are conducted to optimize settings, and results are validated through comparison with reference calculations. Subsequently, correlation analysis using SPSS is performed to examine the relationship between the eight geometric parameters and four hemodynamic parameters. In MATLAB, prediction models for the four hemodynamic parameters are developed using back propagation neural networks (BPNN) and multiple linear regression.<i>Main results.</i>The BPNN model significantly outperforms the multiple linear regression model, reducing mean absolute error, mean squared error, and root mean squared error by 91.7%, 93.9%, and 75.5%, respectively, and increasing<i>R</i><sup>2</sup>from 19.0% to 88.0%. This greatly improves fitting accuracy and reduces errors. This study elucidates the correlation and patterns of geometric parameters of vascular stenosis and bifurcation in evaluating hemodynamic parameters of CAS.<i>Significance.</i>This study opens up new avenues for improving the diagnosis, treatment, and clinical management strategies of CAS.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad9c13","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.Carotid artery stenosis (CAS) is a key factor in pathological conditions, such as thrombosis, which is closely linked to hemodynamic parameters. Existing research often focuses on analyzing the influence of geometric characteristics at the stenosis site, making it difficult to predict the effects of overall vascular geometry on hemodynamic parameters. The objective of this study is to comprehensively examine the influence of geometric morphology at different degrees of CAS and at bifurcation sites on hemodynamic parameters.Approach.A three-dimensional model is established using computed tomography angiography images, and eight geometric parameters of each patient are measured by MIMICS. Then, computational fluid dynamics is utilized to investigate 60 patients with varying degrees of stenosis (10%-95%). Time and grid tests are conducted to optimize settings, and results are validated through comparison with reference calculations. Subsequently, correlation analysis using SPSS is performed to examine the relationship between the eight geometric parameters and four hemodynamic parameters. In MATLAB, prediction models for the four hemodynamic parameters are developed using back propagation neural networks (BPNN) and multiple linear regression.Main results.The BPNN model significantly outperforms the multiple linear regression model, reducing mean absolute error, mean squared error, and root mean squared error by 91.7%, 93.9%, and 75.5%, respectively, and increasingR2from 19.0% to 88.0%. This greatly improves fitting accuracy and reduces errors. This study elucidates the correlation and patterns of geometric parameters of vascular stenosis and bifurcation in evaluating hemodynamic parameters of CAS.Significance.This study opens up new avenues for improving the diagnosis, treatment, and clinical management strategies of CAS.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.