Single cell micro-absorption spectroscopy system with temperature control: System design and spectral analysis.

IF 1.7 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2024-12-01 DOI:10.1063/5.0240029
Yufei Liu, Bo Li, Yue Sun, Changxu Li, Fengya Lu, Zhensheng Zhong, Jinhua Zhou, Yingying Xie, Shengzhao Zhang, Zhen Liang, Mei Zhou
{"title":"Single cell micro-absorption spectroscopy system with temperature control: System design and spectral analysis.","authors":"Yufei Liu, Bo Li, Yue Sun, Changxu Li, Fengya Lu, Zhensheng Zhong, Jinhua Zhou, Yingying Xie, Shengzhao Zhang, Zhen Liang, Mei Zhou","doi":"10.1063/5.0240029","DOIUrl":null,"url":null,"abstract":"<p><p>Micro-absorption spectroscopy is a useful tool for studying the biological characteristics of single cells. However, the weak spectral signal, due to low absorption caused by the tiny optical path length of the cell, makes the spectral data noisy and difficult to analyze. This paper describes a device for single-cell microspectroscopy measurement that integrates an optical fiber spectrometer and an image CCD within a microscopic system, allowing for the simultaneous acquisition of morphology information and the absorption spectrum of a single cell. The device utilizes an illumination source driven by modulated current sources instead of constant current sources and the corresponding spectral signal extraction method to reduce noise levels. It also features a transparent temperature-controlled sample chamber for regulating the sample's temperature, as the absorption of cells may change with temperature. Due to the unwanted baseline drift in the spectral signals, a method of analyzing the similarity degree between the measured spectrum and the standard spectrum is proposed to study the characteristic variation of cells. To verify the feasibility of this method, the device was used for the microscopic spectral measurement and analysis of single red blood cells. The results showed that the variation patterns of spectral parameters correspond to the cell's responses to changes in temperature and storage duration.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0240029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Micro-absorption spectroscopy is a useful tool for studying the biological characteristics of single cells. However, the weak spectral signal, due to low absorption caused by the tiny optical path length of the cell, makes the spectral data noisy and difficult to analyze. This paper describes a device for single-cell microspectroscopy measurement that integrates an optical fiber spectrometer and an image CCD within a microscopic system, allowing for the simultaneous acquisition of morphology information and the absorption spectrum of a single cell. The device utilizes an illumination source driven by modulated current sources instead of constant current sources and the corresponding spectral signal extraction method to reduce noise levels. It also features a transparent temperature-controlled sample chamber for regulating the sample's temperature, as the absorption of cells may change with temperature. Due to the unwanted baseline drift in the spectral signals, a method of analyzing the similarity degree between the measured spectrum and the standard spectrum is proposed to study the characteristic variation of cells. To verify the feasibility of this method, the device was used for the microscopic spectral measurement and analysis of single red blood cells. The results showed that the variation patterns of spectral parameters correspond to the cell's responses to changes in temperature and storage duration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带温度控制的单细胞微吸收光谱系统:系统设计和光谱分析
微吸收光谱是研究单细胞生物学特性的有效工具。然而,由于电池的光程长度很小,光谱信号较弱,吸收较低,使得光谱数据有噪声,难以分析。本文介绍了一种用于单细胞微光谱测量的装置,该装置将光纤光谱仪和图像CCD集成在微观系统中,允许同时获取单细胞的形态信息和吸收光谱。该装置利用由调制电流源驱动的照明源代替恒流源和相应的频谱信号提取方法来降低噪声电平。它还具有一个透明的温控样品室,用于调节样品的温度,因为细胞的吸收可能随着温度的变化而变化。由于光谱信号中存在不必要的基线漂移,提出了一种分析测量光谱与标准光谱相似度的方法来研究细胞的特征变化。为了验证该方法的可行性,将该装置用于单个红细胞的显微光谱测量和分析。结果表明,光谱参数的变化规律与细胞对温度和贮存时间变化的响应相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
The design and analysis of high-precision x-ray mirror benders for Kirkpatrick-Baez mirror system in Hefei advanced light facility. Study on dead zone light recovery of silicon photomultipliers (SiPM) based on focon/tapered fiber arrays. In situ study on the thermoelectric properties of monolayer MoS2 film. Development of an ultraprecise glue-free bimorph deformable mirror with a length of 460 mm. Design and operation of APEX-LD: A compact levitated dipole for a positron-electron experiment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1