Exploration and development of molecule-based printed electronics materials: an integrated approach using experimental, computational, and data sciences.
{"title":"Exploration and development of molecule-based printed electronics materials: an integrated approach using experimental, computational, and data sciences.","authors":"Tatsuo Hasegawa, Satoru Inoue, Seiji Tsuzuki, Sachio Horiuchi, Hiroyuki Matsui, Tomoharu Okada, Reiji Kumai, Koji Yonekura, Saori Maki-Yonekura","doi":"10.1080/14686996.2024.2418282","DOIUrl":null,"url":null,"abstract":"<p><p>The challenge in developing molecule-based electronic materials lies in the uncontrollable or unpredictable nature of their crystal structures, which are crucial for determining both electrical properties and thin-film formability. This review summarizes the findings of a research project focused on the systematic development of crystalline organic semiconductors (OSCs) and organic ferroelectrics by integrating experimental, computational, and data sciences. The key outcomes are as follows: 1) Data Science: We developed a method to identify promising materials from crystal structure databases, leading to the discovery of unique molecule-based ferroelectrics. 2) Computational Science: The origin of high layered crystallinity in π-core - alkyl-chain-linked molecules was clarified based on intermolecular interaction calculations. We proposed a stepwise structure optimization method tailored for layered OSCs. 3) Material Development: We developed various alkylated layered OSCs, which exhibit high mobility, heat resistance, and solubility. We discovered several unique phenomena, including frozen liquid crystal phases, significant polar/antipolar control, and phase control through mixing, leveraging the variability of alkyl chain length. We also developed molecule-based ferroelectrics showing peculiar ferroelectricity, including multiple polarization reversal, competing ferroelectric/antiferroelectric order, and spinner-type configurations with π-skeletons. 4) Advanced Structural Analysis: By combining cryo-electron microscopy and X-ray-free electron laser (XFEL), we enabled crystal structure analysis for ultrathin crystals that are usually difficult to analyse. 5) Device Development: Utilizing the self-organized growth of layered OSCs through solution processes, we developed a method to produce exceptionally clean semiconductor - insulator interfaces, achieving field-effect transistors that show sharp (near theoretical limit) and stable switching at low voltages.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2418282"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2418282","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The challenge in developing molecule-based electronic materials lies in the uncontrollable or unpredictable nature of their crystal structures, which are crucial for determining both electrical properties and thin-film formability. This review summarizes the findings of a research project focused on the systematic development of crystalline organic semiconductors (OSCs) and organic ferroelectrics by integrating experimental, computational, and data sciences. The key outcomes are as follows: 1) Data Science: We developed a method to identify promising materials from crystal structure databases, leading to the discovery of unique molecule-based ferroelectrics. 2) Computational Science: The origin of high layered crystallinity in π-core - alkyl-chain-linked molecules was clarified based on intermolecular interaction calculations. We proposed a stepwise structure optimization method tailored for layered OSCs. 3) Material Development: We developed various alkylated layered OSCs, which exhibit high mobility, heat resistance, and solubility. We discovered several unique phenomena, including frozen liquid crystal phases, significant polar/antipolar control, and phase control through mixing, leveraging the variability of alkyl chain length. We also developed molecule-based ferroelectrics showing peculiar ferroelectricity, including multiple polarization reversal, competing ferroelectric/antiferroelectric order, and spinner-type configurations with π-skeletons. 4) Advanced Structural Analysis: By combining cryo-electron microscopy and X-ray-free electron laser (XFEL), we enabled crystal structure analysis for ultrathin crystals that are usually difficult to analyse. 5) Device Development: Utilizing the self-organized growth of layered OSCs through solution processes, we developed a method to produce exceptionally clean semiconductor - insulator interfaces, achieving field-effect transistors that show sharp (near theoretical limit) and stable switching at low voltages.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.