Conditioned Medium Derived From Human Dental Follicle Mesenchymal Stem Cells Alleviates Macrophage Proinflammatory Responses Through MAPK-ERK-EGR1 Axis.

IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING Stem Cells International Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI:10.1155/sci/5514771
Chuhan Zhang, Peiyi Lv, Qiuying Liang, Jian Zhou, Buling Wu, Wenan Xu
{"title":"Conditioned Medium Derived From Human Dental Follicle Mesenchymal Stem Cells Alleviates Macrophage Proinflammatory Responses Through MAPK-ERK-EGR1 Axis.","authors":"Chuhan Zhang, Peiyi Lv, Qiuying Liang, Jian Zhou, Buling Wu, Wenan Xu","doi":"10.1155/sci/5514771","DOIUrl":null,"url":null,"abstract":"<p><p>The regulation of macrophage polarization by mesenchymal stem cells (MSCs) is a prominent area of research but faces challenges due to limited MSC sources and incomplete understanding of underlying mechanisms. We sought to identify an accessible MSC source and investigate how MSCs regulate macrophage polarization using high-throughput sequencing. We isolated dental follicle MSCs from discarded human third molar dental follicles and cocultured them with THP-1-derived macrophages in the conditioned medium. Transcriptome sequencing identified differentially expressed genes (DEGs) in macrophages, integrating with multiomics database analysis to uncover polarization mechanisms. Our findings demonstrated successful MSC extraction from dental follicles, with the conditioned medium suppressing proinflammatory macrophage functions and influencing macrophage subtyping. MSCs, through paracrine signaling, activated the mitogen-activated protein kinase (MAPK) pathway, leading to extracellular regulated protein kinases (ERK)1/2 phosphorylation and upregulation of early growth response 1 (EGR1) protein. Elevated EGR1 levels inhibited inflammatory gene expression, inhibiting the pro-inflammatory immunoregulatory function of macrophages in inflammatory states. This study provides an efficient method for in vitro macrophage polarization identification. It offers insights into MSC-regulated polarization mechanisms, with potential clinical implications for anti-inflammatory therapy and immune regulation.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2024 ","pages":"5514771"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/sci/5514771","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The regulation of macrophage polarization by mesenchymal stem cells (MSCs) is a prominent area of research but faces challenges due to limited MSC sources and incomplete understanding of underlying mechanisms. We sought to identify an accessible MSC source and investigate how MSCs regulate macrophage polarization using high-throughput sequencing. We isolated dental follicle MSCs from discarded human third molar dental follicles and cocultured them with THP-1-derived macrophages in the conditioned medium. Transcriptome sequencing identified differentially expressed genes (DEGs) in macrophages, integrating with multiomics database analysis to uncover polarization mechanisms. Our findings demonstrated successful MSC extraction from dental follicles, with the conditioned medium suppressing proinflammatory macrophage functions and influencing macrophage subtyping. MSCs, through paracrine signaling, activated the mitogen-activated protein kinase (MAPK) pathway, leading to extracellular regulated protein kinases (ERK)1/2 phosphorylation and upregulation of early growth response 1 (EGR1) protein. Elevated EGR1 levels inhibited inflammatory gene expression, inhibiting the pro-inflammatory immunoregulatory function of macrophages in inflammatory states. This study provides an efficient method for in vitro macrophage polarization identification. It offers insights into MSC-regulated polarization mechanisms, with potential clinical implications for anti-inflammatory therapy and immune regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Stem Cells International
Stem Cells International CELL & TISSUE ENGINEERING-
CiteScore
8.10
自引率
2.30%
发文量
188
审稿时长
18 weeks
期刊介绍: Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials. Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.
期刊最新文献
Narrative Review of Mesenchymal Stem Cell Therapy in Renal Diseases: Mechanisms, Clinical Applications, and Future Directions. Human iPSC-Derived Endothelial Cells Exhibit Reduced Immunogenicity in Comparison With Human Primary Endothelial Cells. Conditioned Medium Derived From Human Dental Follicle Mesenchymal Stem Cells Alleviates Macrophage Proinflammatory Responses Through MAPK-ERK-EGR1 Axis. Long Noncoding RNA EMX2-AS Facilitates Osteoblast Differentiation and Bone Formation by Inhibiting EMX2 Protein Translation and Activating Wnt/β-Catenin Pathway. Identification of a Novel Mesenchymal Stem Cell-Related Signature for Predicting the Prognosis and Therapeutic Responses of Bladder Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1