首页 > 最新文献

Stem Cells International最新文献

英文 中文
Stem Cell Therapy's Efficiency in Reconstructing Alveolar Clefts: A System Review and Meta-Analysis of Randomized Controlled Trials.
IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-03-30 eCollection Date: 2025-01-01 DOI: 10.1155/sci/2780065
Ting Li, Yang Yang Wang, Shan Li, Yunzhe Hu, Zixuan Sun, Cheng Liu

Objectives: The goal of this study was to examine the existing evidence from randomized controlled trials (RCTs) on the efficacy of cell treatment in alveolar cleft (AC). Design: An electronic search was done for studies published between January 2000 and May 2024 in the PubMed/MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases. Primary outcomes were the radiographic assessment of bone graft volume, and the secondary outcome of interest was the number of complications after surgery. A random-effects model and fix-effect model were employed to pool effect sizes, and heterogeneity was assessed using I 2 statistics. Results: Four RCTs, comprising 51 patients, were included in the systematic review and meta-analysis. No statistically significant difference in bone volume (MD [mean difference] -0.82; 95% CI [-3.59, 5.24]; p=0.71) when using cells therapy to repair AC compared to using autologous iliac crest bone graft repair AC. Also, there is no difference in postoperative complications (MD 0.66; 95% CI [0.13, 3.39]; p=0.62) between the two groups. In this meta-analysis, cells therapy on alveolar bone grafting produced results comparable to autologous bone grafting in new bone formation rate and complications. Conclusions: In conclusion, this systematic review and meta-analysis appear to indicate no disadvantage to utilizing cell therapy in AC reconstruction versus autologous bone grafting in terms of bone volume or complications.

{"title":"Stem Cell Therapy's Efficiency in Reconstructing Alveolar Clefts: A System Review and Meta-Analysis of Randomized Controlled Trials.","authors":"Ting Li, Yang Yang Wang, Shan Li, Yunzhe Hu, Zixuan Sun, Cheng Liu","doi":"10.1155/sci/2780065","DOIUrl":"10.1155/sci/2780065","url":null,"abstract":"<p><p><b>Objectives:</b> The goal of this study was to examine the existing evidence from randomized controlled trials (RCTs) on the efficacy of cell treatment in alveolar cleft (AC). <b>Design:</b> An electronic search was done for studies published between January 2000 and May 2024 in the PubMed/MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases. Primary outcomes were the radiographic assessment of bone graft volume, and the secondary outcome of interest was the number of complications after surgery. A random-effects model and fix-effect model were employed to pool effect sizes, and heterogeneity was assessed using <i>I</i> <sup>2</sup> statistics. <b>Results:</b> Four RCTs, comprising 51 patients, were included in the systematic review and meta-analysis. No statistically significant difference in bone volume (MD [mean difference] -0.82; 95% CI [-3.59, 5.24]; <i>p</i>=0.71) when using cells therapy to repair AC compared to using autologous iliac crest bone graft repair AC. Also, there is no difference in postoperative complications (MD 0.66; 95% CI [0.13, 3.39]; <i>p</i>=0.62) between the two groups. In this meta-analysis, cells therapy on alveolar bone grafting produced results comparable to autologous bone grafting in new bone formation rate and complications. <b>Conclusions:</b> In conclusion, this systematic review and meta-analysis appear to indicate no disadvantage to utilizing cell therapy in AC reconstruction versus autologous bone grafting in terms of bone volume or complications.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"2780065"},"PeriodicalIF":3.8,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143804275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stemness-Relevant Gene Signature for Chemotherapeutic Response and Prognosis Prediction in Ovarian Cancer.
IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-03-27 eCollection Date: 2025-01-01 DOI: 10.1155/sci/2505812
Kaixia Zhou, Xiaolu Ma, Tianqing Yan, Hui Zheng, Suhong Xie, Lin Guo, Renquan Lu

Background: Ovarian cancer (OC) stands as the leading cause of cancer-related deaths among women, globally, owing to metastasis and acquired chemoresistance. Cancer stem cells (CSCs) are accountable for tumor initiation and exhibit resistance to chemotherapy and radiotherapy. Identifying stemness-related biomarkers that can aid in the stratification of risk and the response to chemotherapy for OC is feasible and critical. Methods: Gene expression and clinical data of patients with OC were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Four thousand three hundred seventeen stemness-related genes (SRGs) were acquired from the StemChecker database. TCGA was used as the training dataset, while GSE30161 served as validation dataset. Univariate Cox regression analysis was used to identify overall survival (OS)-related SRGs, and multivariate Cox regression analysis and random survival forest analysis were used for generating stemness-relevant prognostic model. Kaplan-Meier plots were used to visualize survival functions. Receiver operating characteristic (ROC) curves were used to assess the prognostic predictive ability of SRG-based features. Associations between signature score, tumor immune phenotype, and response to chemotherapy were analyzed via TIMER 2.0 and oncoPredict R package, respectively. A cohort of Shanghai Cancer Center was employed to verify the predictive robustness of the signature with respect to chemotherapy response. Results: Seven SRGs (actin-binding Rho activating C-terminal like (ABRACL), growth factor receptor bound protein 7 (GRB7), Lin-28 homolog B (LIN28B), lipolysis stimulated lipoprotein receptor (LSR), neuromedin U (NMU), Solute Carrier Family 4 Member 11 (SLC4A11), and thymocyte selection associated family member 2 (THEMIS2)) were found to have excellent predictive potential for patient survival. Patients in the high stemness risk group presented a poorer prognosis (p  < 0.0001), and patients with lower stemness scores were more likely to benefit from chemotherapy. Several tumorigenesis pathways, such as mitotic spindle and glycolysis, were enriched in the high stemness risk group. Tumor with high-risk scores tended to be in a status of relatively high tumor infiltration of CD4+ T cells, neutrophils, and macrophages, while tumor with low-risk scores tended to be in a status of relatively high tumor infiltration of CD8+ T cells. Conclusions: The stemness-relevant prognostic gene signature has the potential to serve as a clinically helpful biomarker for guiding the management of OC patients.

背景:卵巢癌(OC)因转移和获得性化疗耐药性而成为全球妇女癌症相关死亡的主要原因。癌症干细胞(CSC)对肿瘤的发生负有责任,并表现出对化疗和放疗的耐药性。确定与干细胞相关的生物标志物,以帮助对OC进行风险分层和对化疗的反应,是可行的,也是至关重要的。方法:从癌症基因组图谱(TCGA)和基因表达总库(GEO)数据库下载OC患者的基因表达和临床数据。从StemChecker数据库获取了43717个干细胞相关基因(SRGs)。TCGA 用作训练数据集,GSE30161 用作验证数据集。单变量Cox回归分析用于识别与总生存期(OS)相关的SRG,多变量Cox回归分析和随机生存森林分析用于生成与干细胞相关的预后模型。Kaplan-Meier图用于显示生存函数。接收者操作特征曲线(ROC)用于评估基于SRG特征的预后预测能力。通过TIMER 2.0和oncoPredict R软件包分别分析了特征得分、肿瘤免疫表型和化疗反应之间的关联。采用上海癌症中心的队列验证了特征对化疗反应的预测稳健性。结果研究发现,7个SRG(肌动蛋白结合Rho激活C-末端样蛋白(ABRACL)、生长因子受体结合蛋白7(GRB7)、Lin-28同源物B(LIN28B)、脂溶刺激脂蛋白受体(LSR)、神经生长因子U(NMU)、溶质运载家族4成员11(SLC4A11)和胸腺细胞选择相关家族成员2(THEMIS2))对患者的生存具有很好的预测潜力。高干化风险组患者的预后较差(p < 0.0001),而干化评分较低的患者更有可能从化疗中获益。有丝分裂纺锤体和糖酵解等几种肿瘤发生途径在干细胞高危组中富集。高风险评分的肿瘤往往处于CD4+ T细胞、中性粒细胞和巨噬细胞相对较高的肿瘤浸润状态,而低风险评分的肿瘤往往处于CD8+ T细胞相对较高的肿瘤浸润状态。结论与干细胞相关的预后基因特征有望成为指导OC患者治疗的临床有用生物标志物。
{"title":"Stemness-Relevant Gene Signature for Chemotherapeutic Response and Prognosis Prediction in Ovarian Cancer.","authors":"Kaixia Zhou, Xiaolu Ma, Tianqing Yan, Hui Zheng, Suhong Xie, Lin Guo, Renquan Lu","doi":"10.1155/sci/2505812","DOIUrl":"10.1155/sci/2505812","url":null,"abstract":"<p><p><b>Background:</b> Ovarian cancer (OC) stands as the leading cause of cancer-related deaths among women, globally, owing to metastasis and acquired chemoresistance. Cancer stem cells (CSCs) are accountable for tumor initiation and exhibit resistance to chemotherapy and radiotherapy. Identifying stemness-related biomarkers that can aid in the stratification of risk and the response to chemotherapy for OC is feasible and critical. <b>Methods:</b> Gene expression and clinical data of patients with OC were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Four thousand three hundred seventeen stemness-related genes (SRGs) were acquired from the StemChecker database. TCGA was used as the training dataset, while GSE30161 served as validation dataset. Univariate Cox regression analysis was used to identify overall survival (OS)-related SRGs, and multivariate Cox regression analysis and random survival forest analysis were used for generating stemness-relevant prognostic model. Kaplan-Meier plots were used to visualize survival functions. Receiver operating characteristic (ROC) curves were used to assess the prognostic predictive ability of SRG-based features. Associations between signature score, tumor immune phenotype, and response to chemotherapy were analyzed via TIMER 2.0 and oncoPredict R package, respectively. A cohort of Shanghai Cancer Center was employed to verify the predictive robustness of the signature with respect to chemotherapy response. <b>Results:</b> Seven SRGs (actin-binding Rho activating C-terminal like (ABRACL), growth factor receptor bound protein 7 (GRB7), Lin-28 homolog B (LIN28B), lipolysis stimulated lipoprotein receptor (LSR), neuromedin U (NMU), Solute Carrier Family 4 Member 11 (SLC4A11), and thymocyte selection associated family member 2 (THEMIS2)) were found to have excellent predictive potential for patient survival. Patients in the high stemness risk group presented a poorer prognosis (<i>p</i>  < 0.0001), and patients with lower stemness scores were more likely to benefit from chemotherapy. Several tumorigenesis pathways, such as mitotic spindle and glycolysis, were enriched in the high stemness risk group. Tumor with high-risk scores tended to be in a status of relatively high tumor infiltration of CD4+ T cells, neutrophils, and macrophages, while tumor with low-risk scores tended to be in a status of relatively high tumor infiltration of CD8+ T cells. <b>Conclusions:</b> The stemness-relevant prognostic gene signature has the potential to serve as a clinically helpful biomarker for guiding the management of OC patients.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"2505812"},"PeriodicalIF":3.8,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects and Mechanisms of Extracellular Vesicles in Different Models of Acute Kidney Injury.
IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-03-24 eCollection Date: 2025-01-01 DOI: 10.1155/sci/1075016
Weidong Wang, Jingyu Wang, Dan Liao

Acute kidney injury (AKI) is a rapid decline in renal function caused by ischemia/reperfusion (I/R), renal toxic injury, and sepsis. While the precise molecular mechanisms underlying AKI are still under investigation, current therapeutic approaches remain insufficient. In recent years, there has been growing evidence that mesenchymal stem cells (MSCs) have great potential in accelerating renal repair after AKI in various preclinical models, while there has been extensive research on extracellular vesicles (EVs) as therapeutic mediators in AKI models, and they are considered to be superior to MSCs as new regenerative therapies. EVs are nanoparticles secreted by various types of cells under physiological and pathological conditions. EVs derived from various sources possess biomarker potential and play crucial roles in mediating cellular communication between kidney cells and other tissue cells by transmitting signal molecules. These vesicles play a direct and indirect role in regulating the pathophysiological mechanisms of AKI and contribute to the occurrence, development, treatment, and repair of AKI. In this review, we briefly outline the essential characteristics of EVs, focus on the multiple molecular mechanisms currently involved in the protection of EVs against different types of AKI, and further discuss the potential targets of EVs from different sources in the treatment of AKI. Finally, we summarized the deficiencies in the production and treatment of EVs and the current strategies for improvement.

{"title":"Effects and Mechanisms of Extracellular Vesicles in Different Models of Acute Kidney Injury.","authors":"Weidong Wang, Jingyu Wang, Dan Liao","doi":"10.1155/sci/1075016","DOIUrl":"10.1155/sci/1075016","url":null,"abstract":"<p><p>Acute kidney injury (AKI) is a rapid decline in renal function caused by ischemia/reperfusion (I/R), renal toxic injury, and sepsis. While the precise molecular mechanisms underlying AKI are still under investigation, current therapeutic approaches remain insufficient. In recent years, there has been growing evidence that mesenchymal stem cells (MSCs) have great potential in accelerating renal repair after AKI in various preclinical models, while there has been extensive research on extracellular vesicles (EVs) as therapeutic mediators in AKI models, and they are considered to be superior to MSCs as new regenerative therapies. EVs are nanoparticles secreted by various types of cells under physiological and pathological conditions. EVs derived from various sources possess biomarker potential and play crucial roles in mediating cellular communication between kidney cells and other tissue cells by transmitting signal molecules. These vesicles play a direct and indirect role in regulating the pathophysiological mechanisms of AKI and contribute to the occurrence, development, treatment, and repair of AKI. In this review, we briefly outline the essential characteristics of EVs, focus on the multiple molecular mechanisms currently involved in the protection of EVs against different types of AKI, and further discuss the potential targets of EVs from different sources in the treatment of AKI. Finally, we summarized the deficiencies in the production and treatment of EVs and the current strategies for improvement.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"1075016"},"PeriodicalIF":3.8,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957863/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143754443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review: Advances in Mesenchymal Stem Cell Applications for Burn Wound Repair.
IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-03-20 eCollection Date: 2025-01-01 DOI: 10.1155/sci/6683745
Hui-Juan Zhang, Jing-Jie Ming, Hong-Xiao Zhang, Shao-Yi-Han Fang, Quan-Wen Liu, Hong-Yan Zhang

Tissue repair following skin injury is a complex process that encompasses hemostasis, inflammation, tissue cell proliferation, and structural remodeling. Mesenchymal stem cells (MSCs) are derived from the mesodermal layer of tissues and possess multidirectional differentiation potential and self-renewal capabilities. MSCs from various sources, including the bone marrow, adipose tissue, dental pulp, umbilical cord, and amniotic membrane, have demonstrated effectiveness in promoting skin injury repair. They aid in this process by fostering the formation of new blood vessels in damaged tissues, self-renewal, or transdifferentiation into skin or sweat gland cells. Moreover, MSCs promote the proliferation and migration of skin cells, reduce wound inflammation, and restore the extracellular matrix through paracrine secretion. In this paper, we review recent findings regarding MSCs and their role in burn wound repair. Additionally, we explore the potential of combining MSCs with various biomaterials for treating burn wounds and analyze clinical cases wherein MSCs were administered to patients, offering insights into ongoing research on MSC-based therapies for skin injuries.

{"title":"A Comprehensive Review: Advances in Mesenchymal Stem Cell Applications for Burn Wound Repair.","authors":"Hui-Juan Zhang, Jing-Jie Ming, Hong-Xiao Zhang, Shao-Yi-Han Fang, Quan-Wen Liu, Hong-Yan Zhang","doi":"10.1155/sci/6683745","DOIUrl":"10.1155/sci/6683745","url":null,"abstract":"<p><p>Tissue repair following skin injury is a complex process that encompasses hemostasis, inflammation, tissue cell proliferation, and structural remodeling. Mesenchymal stem cells (MSCs) are derived from the mesodermal layer of tissues and possess multidirectional differentiation potential and self-renewal capabilities. MSCs from various sources, including the bone marrow, adipose tissue, dental pulp, umbilical cord, and amniotic membrane, have demonstrated effectiveness in promoting skin injury repair. They aid in this process by fostering the formation of new blood vessels in damaged tissues, self-renewal, or transdifferentiation into skin or sweat gland cells. Moreover, MSCs promote the proliferation and migration of skin cells, reduce wound inflammation, and restore the extracellular matrix through paracrine secretion. In this paper, we review recent findings regarding MSCs and their role in burn wound repair. Additionally, we explore the potential of combining MSCs with various biomaterials for treating burn wounds and analyze clinical cases wherein MSCs were administered to patients, offering insights into ongoing research on MSC-based therapies for skin injuries.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"6683745"},"PeriodicalIF":3.8,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949610/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppression of TP Rat Pancreatic Acinar Cell Apoptosis by hucMSC-Ex Carrying hsa-miR-21-5p via PTEN/PI3K Regulation.
IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-03-17 eCollection Date: 2025-01-01 DOI: 10.1155/sci/8883585
Zhao Zhirong, Jiang Kexin, Yuan Mu, Zhou Lichen, Tan Zhen, Liang Hongyin, Dai Ruiwu

Objective: The traumatic pancreatitis (TP) has an alarmingly high mortality rate. Our previous research has demonstrated that human umbilical cord mesenchymal stem cells-derived exosomes (hucMSC-Exs) could treat TP by inhibiting acinar cell apoptosis. Accordingly, the objective of this study is to unravel the intricate mechanism behind the repair of pancreatic injury in TP rats. Methods: A gene interaction network of miRNA was constructed based on the Gene Expression Omnibus (GEO) database (GSE 159814). Our investigation was divided into two groups, and appropriate controls were implemented for each group. The expression levels of inflammatory factors in each group were detected, along with the pathological damage of pancreatic tissue, the percentage of apoptotic cells, and key mRNA and protein expression levels. Results: The miRNA-mRNA gene interaction network suggests that hsa-miR-21-5p/phosphatase and tensin homolog (PTEN) are positioned at the core of this interaction network. Enzyme-linked immunosorbent assay (ELISA) and histological examination (HE) results suggest that pancreatic damage increased in the miR-21 inhibitor and EXW groups, whereas it decreased in the miR-21 activator and EXC groups compared to the EX group. PCR, western blot (WB), and TdT-mediated dUTP Nick-End Labeling (TUNEL) results indicate that hucMSC-Ex carrying hsa-miR-21-5p suppresses excessive activation of PTEN by phosphoinositide 3-kinase (PI3K), exerting therapeutic effects. Conclusion: This study has discovered that hucMSC-Ex effectively inhibits the translation of PTEN via the transported hsa-miR-21-5p, consequently affecting the PI3K/serine-threonine kinase (AKT) signaling pathway. This results in reduced inflammation and inhibition of acinar cell apoptosis by regulating pancreatic enzyme leakage, thereby providing a therapeutic effect on TP.

目的:创伤性胰腺炎(TP)的死亡率高得惊人。我们之前的研究表明,人脐带间充质干细胞衍生的外泌体(hucMSC-Exs)可通过抑制胰腺细胞凋亡来治疗创伤性胰腺炎。因此,本研究旨在揭示 TP 大鼠胰腺损伤修复背后的复杂机制。研究方法基于基因表达总库(Gene Expression Omnibus,GEO)数据库(GSE 159814)构建了 miRNA 的基因相互作用网络。我们的研究分为两组,每组都进行了适当的对照。检测各组炎症因子的表达水平、胰腺组织的病理损伤、凋亡细胞的比例以及关键 mRNA 和蛋白的表达水平。结果显示miRNA-mRNA基因相互作用网络表明,hsa-miR-21-5p/磷酸酶和天丝蛋白同源物(PTEN)位于该相互作用网络的核心。酶联免疫吸附试验(ELISA)和组织学检查(HE)结果表明,与EX组相比,miR-21抑制剂组和EXW组的胰腺损伤加重,而miR-21激活剂组和EXC组的胰腺损伤减轻。PCR、Western blot(WB)和 TdT-mediated dUTP Nick-End Labeling(TUNEL)结果表明,携带 hsa-miR-21-5p 的 hucMSC-Ex 能抑制磷酸肌酸 3- 激酶(PI3K)对 PTEN 的过度激活,从而发挥治疗作用。结论本研究发现,hucMSC-Ex 可通过转运的 hsa-miR-21-5p 有效抑制 PTEN 的翻译,从而影响 PI3K/丝氨酸苏氨酸激酶(AKT)信号通路。这导致炎症减轻,并通过调节胰酶渗漏抑制了尖锐湿疣细胞的凋亡,从而对 TP 起到治疗作用。
{"title":"Suppression of TP Rat Pancreatic Acinar Cell Apoptosis by hucMSC-Ex Carrying hsa-miR-21-5p via PTEN/PI3K Regulation.","authors":"Zhao Zhirong, Jiang Kexin, Yuan Mu, Zhou Lichen, Tan Zhen, Liang Hongyin, Dai Ruiwu","doi":"10.1155/sci/8883585","DOIUrl":"10.1155/sci/8883585","url":null,"abstract":"<p><p><b>Objective:</b> The traumatic pancreatitis (TP) has an alarmingly high mortality rate. Our previous research has demonstrated that human umbilical cord mesenchymal stem cells-derived exosomes (hucMSC-Exs) could treat TP by inhibiting acinar cell apoptosis. Accordingly, the objective of this study is to unravel the intricate mechanism behind the repair of pancreatic injury in TP rats. <b>Methods:</b> A gene interaction network of miRNA was constructed based on the Gene Expression Omnibus (GEO) database (GSE 159814). Our investigation was divided into two groups, and appropriate controls were implemented for each group. The expression levels of inflammatory factors in each group were detected, along with the pathological damage of pancreatic tissue, the percentage of apoptotic cells, and key mRNA and protein expression levels. <b>Results:</b> The miRNA-mRNA gene interaction network suggests that hsa-miR-21-5p/phosphatase and tensin homolog (PTEN) are positioned at the core of this interaction network. Enzyme-linked immunosorbent assay (ELISA) and histological examination (HE) results suggest that pancreatic damage increased in the miR-21 inhibitor and EXW groups, whereas it decreased in the miR-21 activator and EXC groups compared to the EX group. PCR, western blot (WB), and TdT-mediated dUTP Nick-End Labeling (TUNEL) results indicate that hucMSC-Ex carrying hsa-miR-21-5p suppresses excessive activation of PTEN by phosphoinositide 3-kinase (PI3K), exerting therapeutic effects. <b>Conclusion:</b> This study has discovered that hucMSC-Ex effectively inhibits the translation of PTEN via the transported hsa-miR-21-5p, consequently affecting the PI3K/serine-threonine kinase (AKT) signaling pathway. This results in reduced inflammation and inhibition of acinar cell apoptosis by regulating pancreatic enzyme leakage, thereby providing a therapeutic effect on TP.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"8883585"},"PeriodicalIF":3.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143701720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipose-Derived Stem Cell Exosomes Promote Scar-Free Healing of Diabetic Wounds via miR-204-5p/TGF-β1/Smad Pathway.
IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-19 eCollection Date: 2025-01-01 DOI: 10.1155/sci/6344844
Peijun Song, Qiu Liang, Xiuyu Ge, Danlian Zhou, Mei Yuan, Weiwei Chu, Jing Xu

Numerous researches have demonstrated the therapeutic potential of adipose-derived stem cell exosomes (ADSC-Exos) in promoting wound healing. In this study, we aimed to investigate the impact of ADSC-Exos on diabetic wound fibroblasts and elucidate its possible mechanisms. CCK-8, Edu, cell scratch, and Transwell tests were used to evaluate the function of ADSC-Exos on rat skin fibroblasts (RSFs) in high-glucose (HG) medium. The targeting effect of ADSC-Exo-derived microRNA (miRNA) and TGF-β1 was assessed using bioinformatic analysis and then confirmed with western blot and dual luciferase reporter assays. ADSC-Exos, miR-204-5p mimic, and anti-miR-204-5p mimic were used to stimulate RSFs, and the levels of TGF-β1/Smad pathway were analyzed by western blot. In vivo, digital photo and tissue section staining were used to evaluate the therapeutic effect of ADSC-Exos on diabetic wounds. The data showed that ADSC-Exos enhance the proliferation and migration of fibroblasts under HG conditions, reduce excessive myofibroblast differentiation and collagen deposition, and promote scarless healing of diabetic wounds. Additionally, miR-204-5p in ADSC-Exos targets TGF-β1 to inhibit p-Smad2/3, Col I, and alpha-smooth muscle actin (α-SMA), thereby reducing fibrosis. These findings suggest that ADSC-Exos have potential prospects for promoting diabetic wound healing.

{"title":"Adipose-Derived Stem Cell Exosomes Promote Scar-Free Healing of Diabetic Wounds via miR-204-5p/TGF-<i>β</i>1/Smad Pathway.","authors":"Peijun Song, Qiu Liang, Xiuyu Ge, Danlian Zhou, Mei Yuan, Weiwei Chu, Jing Xu","doi":"10.1155/sci/6344844","DOIUrl":"10.1155/sci/6344844","url":null,"abstract":"<p><p>Numerous researches have demonstrated the therapeutic potential of adipose-derived stem cell exosomes (ADSC-Exos) in promoting wound healing. In this study, we aimed to investigate the impact of ADSC-Exos on diabetic wound fibroblasts and elucidate its possible mechanisms. CCK-8, Edu, cell scratch, and Transwell tests were used to evaluate the function of ADSC-Exos on rat skin fibroblasts (RSFs) in high-glucose (HG) medium. The targeting effect of ADSC-Exo-derived microRNA (miRNA) and TGF-<i>β</i>1 was assessed using bioinformatic analysis and then confirmed with western blot and dual luciferase reporter assays. ADSC-Exos, miR-204-5p mimic, and anti-miR-204-5p mimic were used to stimulate RSFs, and the levels of TGF-<i>β</i>1/Smad pathway were analyzed by western blot. In vivo, digital photo and tissue section staining were used to evaluate the therapeutic effect of ADSC-Exos on diabetic wounds. The data showed that ADSC-Exos enhance the proliferation and migration of fibroblasts under HG conditions, reduce excessive myofibroblast differentiation and collagen deposition, and promote scarless healing of diabetic wounds. Additionally, miR-204-5p in ADSC-Exos targets TGF-<i>β</i>1 to inhibit p-Smad2/3, Col I, and alpha-smooth muscle actin (<i>α</i>-SMA), thereby reducing fibrosis. These findings suggest that ADSC-Exos have potential prospects for promoting diabetic wound healing.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"6344844"},"PeriodicalIF":3.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865461/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143524480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Different Cell Types on the Osteogenic Differentiation Process of Mesenchymal Stem Cells.
IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-13 eCollection Date: 2025-01-01 DOI: 10.1155/sci/5551222
Zixin Wang, Lina Ren, Zhengtao Li, Qingyuan Qiu, Haonan Wang, Xin Huang, Dongyang Ma

The skeleton is an important organ in the human body. Bone defects caused by trauma, inflammation, tumors, and other reasons can impact the quality of life of patients. Although the skeleton has a certain ability to repair itself, the current most effective method is still autologous bone transplantation due to factors such as blood supply and defect size. Modern medicine is attempting to overcome these limitations through cell therapy, with mesenchymal stem cells (MSCs) playing a crucial role. MSCs can be extracted from different tissues, and their differentiation potential varies depending on the source. Various cells and cell secretions can influence this process. This article, based on previous research, reviews the effects of macrophages, endothelial cells (ECs), nerve cells, periodontal cells, and even some bacteria on MSC osteogenic differentiation, aiming to provide a reference for multicell coculture strategies related to osteogenesis.

骨骼是人体的重要器官。由于创伤、炎症、肿瘤等原因造成的骨骼缺损会影响患者的生活质量。虽然骨骼有一定的自我修复能力,但由于血液供应和缺损大小等因素,目前最有效的方法仍然是自体骨移植。现代医学正试图通过细胞疗法来克服这些限制,其中间充质干细胞(MSCs)发挥着至关重要的作用。间充质干细胞可从不同组织中提取,其分化潜力因来源而异。各种细胞和细胞分泌物都会影响这一过程。本文在以往研究的基础上,综述了巨噬细胞、内皮细胞(EC)、神经细胞、牙周细胞甚至一些细菌对间叶干细胞成骨分化的影响,旨在为与成骨相关的多细胞共培养策略提供参考。
{"title":"Impact of Different Cell Types on the Osteogenic Differentiation Process of Mesenchymal Stem Cells.","authors":"Zixin Wang, Lina Ren, Zhengtao Li, Qingyuan Qiu, Haonan Wang, Xin Huang, Dongyang Ma","doi":"10.1155/sci/5551222","DOIUrl":"10.1155/sci/5551222","url":null,"abstract":"<p><p>The skeleton is an important organ in the human body. Bone defects caused by trauma, inflammation, tumors, and other reasons can impact the quality of life of patients. Although the skeleton has a certain ability to repair itself, the current most effective method is still autologous bone transplantation due to factors such as blood supply and defect size. Modern medicine is attempting to overcome these limitations through cell therapy, with mesenchymal stem cells (MSCs) playing a crucial role. MSCs can be extracted from different tissues, and their differentiation potential varies depending on the source. Various cells and cell secretions can influence this process. This article, based on previous research, reviews the effects of macrophages, endothelial cells (ECs), nerve cells, periodontal cells, and even some bacteria on MSC osteogenic differentiation, aiming to provide a reference for multicell coculture strategies related to osteogenesis.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"5551222"},"PeriodicalIF":3.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143469319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human iPSC Reprogramming Success: The Impact of Approaches and Source Materials.
IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-16 eCollection Date: 2025-01-01 DOI: 10.1155/sci/2223645
Tatyana Pozner, Christine Grandizio, Matthew W Mitchell, Nahid Turan, Laura Scheinfeldt

Since their discovery, human induced pluripotent stem cells (hiPSCs) have been instrumental in biomedical research, particularly in the fields of disease modelling, drug screening and regenerative therapies. Their use has significantly increased over recent years driven by the ability of hiPSCs to provide differentiated cell models without requiring embryonic stem cells. Furthermore, the transition from integrating to non-integrating reprogramming methodologies has contributed to the increase in utilisation. This shift minimises the risk of genomic alterations, enhancing the safety and reliability of hiPSCs. However, the factors that contribute to reprogramming success are still not well understood. In this study, we conducted a comparative analysis of the most prevalent non-integrating reprogramming methods across a range of starting source materials to assess their impact on reprogramming success rates. We found that while source material does not significantly impact success rates, the Sendai virus reprogramming method yields significantly higher success rates relative to the episomal reprogramming method. Our findings offer important insights from a biobanking perspective, for which long-term reliability, integrity and reproducibility of hiPSCs are crucial.

{"title":"Human iPSC Reprogramming Success: The Impact of Approaches and Source Materials.","authors":"Tatyana Pozner, Christine Grandizio, Matthew W Mitchell, Nahid Turan, Laura Scheinfeldt","doi":"10.1155/sci/2223645","DOIUrl":"10.1155/sci/2223645","url":null,"abstract":"<p><p>Since their discovery, human induced pluripotent stem cells (hiPSCs) have been instrumental in biomedical research, particularly in the fields of disease modelling, drug screening and regenerative therapies. Their use has significantly increased over recent years driven by the ability of hiPSCs to provide differentiated cell models without requiring embryonic stem cells. Furthermore, the transition from integrating to non-integrating reprogramming methodologies has contributed to the increase in utilisation. This shift minimises the risk of genomic alterations, enhancing the safety and reliability of hiPSCs. However, the factors that contribute to reprogramming success are still not well understood. In this study, we conducted a comparative analysis of the most prevalent non-integrating reprogramming methods across a range of starting source materials to assess their impact on reprogramming success rates. We found that while source material does not significantly impact success rates, the Sendai virus reprogramming method yields significantly higher success rates relative to the episomal reprogramming method. Our findings offer important insights from a biobanking perspective, for which long-term reliability, integrity and reproducibility of hiPSCs are crucial.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"2223645"},"PeriodicalIF":3.8,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosome Loaded in Microneedle Patch Ameliorates Renal Ischemia-Reperfusion Injury in a Mouse Model.
IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-15 eCollection Date: 2025-01-01 DOI: 10.1155/sci/3106634
Samin Taghavi, Somayeh Keshtkar, Mozhgan Abedanzadeh, Mehrdad Hashemi, Reza Heidari, Samira Sadat Abolmaali, Mahintaj Dara, Mahdokht Hossein Aghdaei, Alireza Sabegh, Negar Azarpira

Introduction: Renal dysfunction due to ischemia-reperfusion injury (IRI) is a common problem after kidney transplantation. In recent years, studies on animal models have shown that exosomes derived from mesenchymal stem cells (MSC-Exo) play an important role in treating acute kidney injury (AKI) and promoting tissue repair. The microneedle patch provides a noninvasive and targeted delivery system for exosomes. The purpose of this innovative approach is to combine MSC-Exo with microneedle patches. Method: Exosomes were isolated from MSCs, characterized, and placed in the prepared microneedle patch. Then this construct was applied to the IRI mice model. After 7 days, the gene expression of miR-34a and its targets B-cell lymphoma-2 (BCL-2) and BCL-2-associated X (BAX), along with reactive oxygen species (ROS) and lipid peroxidation (LPO) production, was investigated. Additionally, renoprotection was evaluated for measuring blood urea nitrogen (BUN) and creatinine (Cr) and histopathology detection. Results: After using microneedle patches containing exosomes, the reduction of miR-34a and BAX and enhancement of BCL-2 were observed. Moreover, treatment by this construct decreased the production of ROS, LPO, BUN, and Cr and improved tissue damage. Conclusion: The use of a microneedle patch containing exosomes is a noninvasive method that enables the release of exosomes in a slow manner. In comparison to exosome injection alone, microneedle patch-exosome treatment offers a longer and more targeted effect that improves renal IRI dysfunction and reduces tissue damage, potentially facilitating the clinical application of exosomes and improving graft survival.

{"title":"Exosome Loaded in Microneedle Patch Ameliorates Renal Ischemia-Reperfusion Injury in a Mouse Model.","authors":"Samin Taghavi, Somayeh Keshtkar, Mozhgan Abedanzadeh, Mehrdad Hashemi, Reza Heidari, Samira Sadat Abolmaali, Mahintaj Dara, Mahdokht Hossein Aghdaei, Alireza Sabegh, Negar Azarpira","doi":"10.1155/sci/3106634","DOIUrl":"10.1155/sci/3106634","url":null,"abstract":"<p><p><b>Introduction:</b> Renal dysfunction due to ischemia-reperfusion injury (IRI) is a common problem after kidney transplantation. In recent years, studies on animal models have shown that exosomes derived from mesenchymal stem cells (MSC-Exo) play an important role in treating acute kidney injury (AKI) and promoting tissue repair. The microneedle patch provides a noninvasive and targeted delivery system for exosomes. The purpose of this innovative approach is to combine MSC-Exo with microneedle patches. <b>Method:</b> Exosomes were isolated from MSCs, characterized, and placed in the prepared microneedle patch. Then this construct was applied to the IRI mice model. After 7 days, the gene expression of miR-34a and its targets B-cell lymphoma-2 (BCL-2) and BCL-2-associated X (BAX), along with reactive oxygen species (ROS) and lipid peroxidation (LPO) production, was investigated. Additionally, renoprotection was evaluated for measuring blood urea nitrogen (BUN) and creatinine (Cr) and histopathology detection. <b>Results:</b> After using microneedle patches containing exosomes, the reduction of miR-34a and BAX and enhancement of BCL-2 were observed. Moreover, treatment by this construct decreased the production of ROS, LPO, BUN, and Cr and improved tissue damage. <b>Conclusion:</b> The use of a microneedle patch containing exosomes is a noninvasive method that enables the release of exosomes in a slow manner. In comparison to exosome injection alone, microneedle patch-exosome treatment offers a longer and more targeted effect that improves renal IRI dysfunction and reduces tissue damage, potentially facilitating the clinical application of exosomes and improving graft survival.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"3106634"},"PeriodicalIF":3.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human Umbilical Cord-Mesenchymal Stem Cells Combined With Low Dosage Nintedanib Rather Than Using Alone Mitigates Pulmonary Fibrosis in Mice. 人脐带间充质干细胞联合低剂量尼达尼布比单独使用更能减轻小鼠肺纤维化。
IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-07 eCollection Date: 2025-01-01 DOI: 10.1155/sci/9445735
Huijun Qiu, Rong Zhang, Daozhu Si, Yi Shu, Jiang Liu, Yunqiu Xia, Ou Zhou, Wen Tan, Ke Yang, Daiyin Tian, Zhengxiu Luo, Enmei Liu, Lin Zou, Zhou Fu, Danyi Peng

Pulmonary fibrosis (PF) is a lethal pathological change of fibrotic interstitial lung diseases (ILDs) with abundant fibroblasts proliferation after severely or continually alveolar epithelial cells (AECs) injury. Barely therapies are helpful for PF. Here we use bleomycin intratracheally injection to model PF with or without human umbilical cord-mesenchymal stem cells (hUC-MSCs) and/or nintedanib intervention. RNA-Seq followed with real-time PCR and western blot were used to find out the specific possible mechanisms of the effects of hUC-MSC and nintedanib on PF. Immunostaining, cell counting kit-8 (CCK-8), and 5-bromo-2'-deoxyuridine (BrdU) incorporation assay were used to detect the cell proliferation in vivo or in vitro separately. We found that hUC-MSCs alone had prophylactic, but not therapeutic effects on bleomycin induced mouse PF. Nevertheless, the combination therapy of hUC-MSCs and low-dose nintedanib significantly improved survival and reversed lung fibrosis in PF model mice. The factors secreted by hUC-MSCs have promotional effects on the proliferation both of fibroblasts and AECs. Nintedanib could hamper the facilitation of fibroblasts caused by hUC-MSCs without influence on AECs proliferation, which might be related with the inhibition on FGFR, PDGFR, and VEGFR activities. Our study indicated that the combination therapy of hUC-MSCs and nintedanib should be a promising strategy for PF.

肺纤维化(PF)是严重或持续肺泡上皮细胞(AECs)损伤后纤维化间质性肺疾病(ILDs)的致死性病理改变,成纤维细胞大量增殖。在这里,我们使用气管内注射博莱霉素来模拟PF,有或没有人脐带间充质干细胞(hucc - mscs)和/或尼达尼干预。采用RNA-Seq、real-time PCR和western blot检测hUC-MSC和尼达尼布对PF影响的具体可能机制,采用免疫染色、细胞计数试剂盒-8 (CCK-8)和5-溴-2′-脱氧尿苷(BrdU)掺入法分别检测细胞在体内和体外的增殖情况。我们发现,单独使用hUC-MSCs对博来霉素诱导的小鼠PF具有预防作用,而不是治疗作用,然而,hUC-MSCs与低剂量尼达尼布联合治疗可显著提高PF模型小鼠的存活率并逆转肺纤维化。hUC-MSCs分泌的因子对成纤维细胞和aec的增殖均有促进作用。尼达尼布可抑制hUC-MSCs诱导成纤维细胞,但不影响aec的增殖,这可能与抑制FGFR、PDGFR和VEGFR活性有关。我们的研究表明,hUC-MSCs和尼达尼布的联合治疗应该是一种有前途的PF策略。
{"title":"Human Umbilical Cord-Mesenchymal Stem Cells Combined With Low Dosage Nintedanib Rather Than Using Alone Mitigates Pulmonary Fibrosis in Mice.","authors":"Huijun Qiu, Rong Zhang, Daozhu Si, Yi Shu, Jiang Liu, Yunqiu Xia, Ou Zhou, Wen Tan, Ke Yang, Daiyin Tian, Zhengxiu Luo, Enmei Liu, Lin Zou, Zhou Fu, Danyi Peng","doi":"10.1155/sci/9445735","DOIUrl":"10.1155/sci/9445735","url":null,"abstract":"<p><p>Pulmonary fibrosis (PF) is a lethal pathological change of fibrotic interstitial lung diseases (ILDs) with abundant fibroblasts proliferation after severely or continually alveolar epithelial cells (AECs) injury. Barely therapies are helpful for PF. Here we use bleomycin intratracheally injection to model PF with or without human umbilical cord-mesenchymal stem cells (hUC-MSCs) and/or nintedanib intervention. RNA-Seq followed with real-time PCR and western blot were used to find out the specific possible mechanisms of the effects of hUC-MSC and nintedanib on PF. Immunostaining, cell counting kit-8 (CCK-8), and 5-bromo-2'-deoxyuridine (BrdU) incorporation assay were used to detect the cell proliferation in vivo or in vitro separately. We found that hUC-MSCs alone had prophylactic, but not therapeutic effects on bleomycin induced mouse PF. Nevertheless, the combination therapy of hUC-MSCs and low-dose nintedanib significantly improved survival and reversed lung fibrosis in PF model mice. The factors secreted by hUC-MSCs have promotional effects on the proliferation both of fibroblasts and AECs. Nintedanib could hamper the facilitation of fibroblasts caused by hUC-MSCs without influence on AECs proliferation, which might be related with the inhibition on FGFR, PDGFR, and VEGFR activities. Our study indicated that the combination therapy of hUC-MSCs and nintedanib should be a promising strategy for PF.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"9445735"},"PeriodicalIF":3.8,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732289/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143011935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stem Cells International
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1