Raeanne N Martell, Richard J Daker, H Moriah Sokolowski, Daniel Ansari, Ian M Lyons
{"title":"Implications of neural integration of math and spatial experiences for math ability and math anxiety.","authors":"Raeanne N Martell, Richard J Daker, H Moriah Sokolowski, Daniel Ansari, Ian M Lyons","doi":"10.1007/s00426-024-02063-3","DOIUrl":null,"url":null,"abstract":"<p><p>Mathematical and spatial abilities are positively related at both the behavioral and neural levels. Much of the evidence illuminating this relationship comes from classic laboratory-based experimental methods focused on cognitive performance despite most individuals also experiencing math and space in other contexts, such as in conversations or lectures. To broaden our understanding of math-space integration in these more commonplace situations, we used an auditory memory-encoding task with stimuli whose content evoked a range of educational and everyday settings related to math or spatial thinking. We used a multivariate approach to directly assess the extent of neural similarity between activity patterns elicited by these math and spatial stimuli. Results from whole-brain searchlight analysis revealed a highly specific positive relation between math and spatial activity patterns in bilateral anterior hippocampi. Examining individual variation in math-space similarity, we found that greater math-space similarity in bilateral anterior hippocampi was associated with poorer math skills and higher anxiety about math. Integration of neural responses to mathematical and spatial content may not always portend positive outcomes. We suggest that episodic simulation of quotidian contexts may link everyday experiences with math and spatial thinking-and the strength of this link is predictive of math in a manner that diverges from math-space associations derived from more lab-based tasks. On a methodological level, this work points to the value of considering a wider range of experimental paradigms, and of the value of combining multivariate fMRI analysis with behavioral data to better contextualize interpretations of brain data.</p>","PeriodicalId":48184,"journal":{"name":"Psychological Research-Psychologische Forschung","volume":"89 1","pages":"34"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological Research-Psychologische Forschung","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00426-024-02063-3","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mathematical and spatial abilities are positively related at both the behavioral and neural levels. Much of the evidence illuminating this relationship comes from classic laboratory-based experimental methods focused on cognitive performance despite most individuals also experiencing math and space in other contexts, such as in conversations or lectures. To broaden our understanding of math-space integration in these more commonplace situations, we used an auditory memory-encoding task with stimuli whose content evoked a range of educational and everyday settings related to math or spatial thinking. We used a multivariate approach to directly assess the extent of neural similarity between activity patterns elicited by these math and spatial stimuli. Results from whole-brain searchlight analysis revealed a highly specific positive relation between math and spatial activity patterns in bilateral anterior hippocampi. Examining individual variation in math-space similarity, we found that greater math-space similarity in bilateral anterior hippocampi was associated with poorer math skills and higher anxiety about math. Integration of neural responses to mathematical and spatial content may not always portend positive outcomes. We suggest that episodic simulation of quotidian contexts may link everyday experiences with math and spatial thinking-and the strength of this link is predictive of math in a manner that diverges from math-space associations derived from more lab-based tasks. On a methodological level, this work points to the value of considering a wider range of experimental paradigms, and of the value of combining multivariate fMRI analysis with behavioral data to better contextualize interpretations of brain data.
期刊介绍:
Psychological Research/Psychologische Forschung publishes articles that contribute to a basic understanding of human perception, attention, memory, and action. The Journal is devoted to the dissemination of knowledge based on firm experimental ground, but not to particular approaches or schools of thought. Theoretical and historical papers are welcome to the extent that they serve this general purpose; papers of an applied nature are acceptable if they contribute to basic understanding or serve to bridge the often felt gap between basic and applied research in the field covered by the Journal.