{"title":"Modified ensemble machine learning-based plant leaf disease detection model with optimized K-Means clustering.","authors":"Vijayaganth Viswanathan, Krishnamoorthi Murugasamy","doi":"10.1080/0954898X.2024.2435492","DOIUrl":null,"url":null,"abstract":"<p><p>In the farming sector, the automatic detection of plant leaf disease is considered a vital landmark. Farmers move long distances to consult pathologists to observe the disease, which is expensive and time-consuming. Moreover, detection of disease in a premature period is a difficult process in the existing model. Thus, all these challenges motivate us to develop an inventive plant leaf disease detection model. In the developed model, the data is gathered initially and given as input to the pre-processing step using Contrast Limited Adaptive Histogram Equalization (CLAHE). Next, the leaves are segmented from the pre-processed images, and then abnormality segmentation is done by the K-means clustering system. Here, parameters are optimized using the Opposition-based Bird Swarm Algorithm (O-BSA). Further, features were extracted from abnormality-segmented images in feature extraction. The extracted features are given in the classification step, where leaf disease detection is carried out using Optimized Ensemble Machine Learning (OEML), where, parameter optimization is done by O-BSA. Finally, the developed plant leaf detection approach is evaluated with various performance metrics, and given an accuracy of up to 92.26. These findings show that the developed model is promising over conventional methods and its effectiveness in detecting plant leaf disease.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-45"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2435492","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the farming sector, the automatic detection of plant leaf disease is considered a vital landmark. Farmers move long distances to consult pathologists to observe the disease, which is expensive and time-consuming. Moreover, detection of disease in a premature period is a difficult process in the existing model. Thus, all these challenges motivate us to develop an inventive plant leaf disease detection model. In the developed model, the data is gathered initially and given as input to the pre-processing step using Contrast Limited Adaptive Histogram Equalization (CLAHE). Next, the leaves are segmented from the pre-processed images, and then abnormality segmentation is done by the K-means clustering system. Here, parameters are optimized using the Opposition-based Bird Swarm Algorithm (O-BSA). Further, features were extracted from abnormality-segmented images in feature extraction. The extracted features are given in the classification step, where leaf disease detection is carried out using Optimized Ensemble Machine Learning (OEML), where, parameter optimization is done by O-BSA. Finally, the developed plant leaf detection approach is evaluated with various performance metrics, and given an accuracy of up to 92.26. These findings show that the developed model is promising over conventional methods and its effectiveness in detecting plant leaf disease.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.