Development and experimental validation of an in-house treatment planning system with greedy energy layer optimization for fast IMPT.

ArXiv Pub Date : 2024-11-27
Aoxiang Wang, Ya-Nan Zhu, Jufri Setianegara, Yuting Lin, Peng Xiao, Qingguo Xie, Hao Gao
{"title":"Development and experimental validation of an in-house treatment planning system with greedy energy layer optimization for fast IMPT.","authors":"Aoxiang Wang, Ya-Nan Zhu, Jufri Setianegara, Yuting Lin, Peng Xiao, Qingguo Xie, Hao Gao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intensity-modulated proton therapy (IMPT) using pencil beam technique scans tumor in a layer by layer, then spot by spot manner. It can provide highly conformal dose to tumor targets and spare nearby organs-at-risk (OAR). Fast delivery of IMPT can improve patient comfort and reduce motion-induced uncertainties. Since energy layer switching time dominants the plan delivery time, reducing the number of energy layers is important for improving delivery efficiency. Although various energy layer optimization (ELO) methods exist, they are rarely experimentally validated or clinically implemented, since it is technically challenging to integrate these methods into commercially available treatment planning system (TPS) that is not open-source.</p><p><strong>Purpose: </strong>This work develops and experimentally validates an in-house TPS (IH-TPS) that incorporates a novel ELO method for the purpose of fast IMPT.</p><p><strong>Methods: </strong>The dose calculation accuracy of IH-TPS is verified against the measured beam data and the RayStation TPS. For treatment planning, a novel ELO method via greed selection algorithm is proposed to reduce energy layer switching time and total plan delivery time. To validate the planning accuracy of IH-TPS, the 3D gamma index is calculated between IH-TPS plans and RayStation plans for various scenarios. Patient-specific quality-assurance (QA) verifications are conducted to experimentally verify the delivered dose from the IH-TPS plans for several clinical cases.</p><p><strong>Results: </strong>Dose distributions in IH-TPS matched with those from RayStation TPS, with 3D gamma index results exceeding 95% (2mm, 2%). The ELO method significantly reduced the delivery time while maintaining plan quality. For instance, in a brain case, the number of energy layers was reduced from 78 to 40, leading to a 62% reduction in total delivery time. Patient-specific QA validation with the IBA Proteus<sup>®</sup>ONE proton machine confirmed a >95% pass rate for all cases.</p><p><strong>Conclusions: </strong>An IH-TPS equipped with a novel ELO algorithm is developed and experimentally validated for the purpose of fast IMPT, with enhanced delivery efficiency and preserved plan quality.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623709/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Intensity-modulated proton therapy (IMPT) using pencil beam technique scans tumor in a layer by layer, then spot by spot manner. It can provide highly conformal dose to tumor targets and spare nearby organs-at-risk (OAR). Fast delivery of IMPT can improve patient comfort and reduce motion-induced uncertainties. Since energy layer switching time dominants the plan delivery time, reducing the number of energy layers is important for improving delivery efficiency. Although various energy layer optimization (ELO) methods exist, they are rarely experimentally validated or clinically implemented, since it is technically challenging to integrate these methods into commercially available treatment planning system (TPS) that is not open-source.

Purpose: This work develops and experimentally validates an in-house TPS (IH-TPS) that incorporates a novel ELO method for the purpose of fast IMPT.

Methods: The dose calculation accuracy of IH-TPS is verified against the measured beam data and the RayStation TPS. For treatment planning, a novel ELO method via greed selection algorithm is proposed to reduce energy layer switching time and total plan delivery time. To validate the planning accuracy of IH-TPS, the 3D gamma index is calculated between IH-TPS plans and RayStation plans for various scenarios. Patient-specific quality-assurance (QA) verifications are conducted to experimentally verify the delivered dose from the IH-TPS plans for several clinical cases.

Results: Dose distributions in IH-TPS matched with those from RayStation TPS, with 3D gamma index results exceeding 95% (2mm, 2%). The ELO method significantly reduced the delivery time while maintaining plan quality. For instance, in a brain case, the number of energy layers was reduced from 78 to 40, leading to a 62% reduction in total delivery time. Patient-specific QA validation with the IBA Proteus®ONE proton machine confirmed a >95% pass rate for all cases.

Conclusions: An IH-TPS equipped with a novel ELO algorithm is developed and experimentally validated for the purpose of fast IMPT, with enhanced delivery efficiency and preserved plan quality.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贪婪能量层优化的快速IMPT内部处理计划系统的开发与实验验证。
背景:使用铅笔束技术的调强质子治疗(IMPT)对肿瘤进行逐层扫描,然后逐点扫描。它可以为肿瘤靶点提供高适形剂量,并保护附近的危险器官(OAR)。快速提供IMPT可以提高患者的舒适度,减少运动引起的不确定性。由于能量层切换时间在计划交付时间中占主导地位,因此减少能量层数对于提高交付效率非常重要。尽管存在各种能量层优化(ELO)方法,但它们很少得到实验验证或临床实施,因为将这些方法整合到非开源的商业治疗计划系统(TPS)中在技术上具有挑战性。方法:用测量光束数据和RayStation TPS验证IH-TPS的剂量计算精度。在治疗计划方面,提出了一种基于贪婪选择算法的ELO方法,减少了能量层切换时间和总计划交付时间。为了验证IH-TPS的规划精度,计算了不同场景下IH-TPS方案与RayStation方案之间的3D伽马指数。对患者特异性质量保证(QA)进行验证,以实验方式验证IH-TPS计划对若干临床病例的递送剂量。结果:IH-TPS的剂量分布与RayStation TPS匹配,3D伽马指数结果超过95% (2mm, 2%)。ELO方法在保持计划质量的同时显著缩短了交付时间。例如,在一个大脑案例中,能量层的数量从78层减少到40层,导致总交付时间减少62%。使用IBA Proteus ONE质子机进行患者特异性QA验证,所有病例的合格率均为>95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grade Inflation in Generative Models. A recent evaluation on the performance of LLMs on radiation oncology physics using questions of randomly shuffled options. A Systematic Computational Framework for Practical Identifiability Analysis in Mathematical Models Arising from Biology. Back to the Continuous Attractor. Inferring resource competition in microbial communities from time series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1