Immobility of isolated swarmer cells due to local liquid depletion.

ArXiv Pub Date : 2024-11-26
Ajesh Jose, Benjamín Pérez-Estay, Shira Omer Bendori, Avigdor Eldar, Daniel B Kearns, Gil Ariel, Avraham Be'er
{"title":"Immobility of isolated swarmer cells due to local liquid depletion.","authors":"Ajesh Jose, Benjamín Pérez-Estay, Shira Omer Bendori, Avigdor Eldar, Daniel B Kearns, Gil Ariel, Avraham Be'er","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial swarming is a complex phenomenon in which thousands of self-propelled rod-shaped cells move coherently on surfaces, providing an excellent example of active matter. However, bacterial swarming is different from most studied examples of active systems because single isolated cells do not move, while clusters do. The biophysical aspects underlying this behavior are unclear. In this work we explore the case of low local cell densities, where single cells become temporarily immobile. We show that immobility is related to local depletion of liquid. In addition, it is also associated with the state of the flagella. Specifically, the flagellar bundles at (temporarily) liquid depleted regions are completely spread-out. Our results suggest that dry models of self-propelled agents, which only consider steric alignments and neglect hydrodynamic effects, are oversimplified and are not sufficient to describe swarming bacteria.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623706/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial swarming is a complex phenomenon in which thousands of self-propelled rod-shaped cells move coherently on surfaces, providing an excellent example of active matter. However, bacterial swarming is different from most studied examples of active systems because single isolated cells do not move, while clusters do. The biophysical aspects underlying this behavior are unclear. In this work we explore the case of low local cell densities, where single cells become temporarily immobile. We show that immobility is related to local depletion of liquid. In addition, it is also associated with the state of the flagella. Specifically, the flagellar bundles at (temporarily) liquid depleted regions are completely spread-out. Our results suggest that dry models of self-propelled agents, which only consider steric alignments and neglect hydrodynamic effects, are oversimplified and are not sufficient to describe swarming bacteria.

Abstract Image

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部液体耗竭导致离体群集细胞不动。
细菌群是一种复杂的现象,成千上万的自我推进的杆状细胞在表面上连贯地移动,提供了一个很好的活性物质的例子。然而,细菌群与大多数研究过的活性系统的例子不同,因为单个分离的细胞不移动,而集群可以移动。这种行为背后的生物物理因素尚不清楚。在这项工作中,我们探讨了低局部细胞密度的情况,其中单个细胞暂时无法移动。我们表明,不动性与局部液体耗竭有关。此外,它还与鞭毛的状态有关。具体来说,鞭毛束在(暂时)液体耗尽的区域完全展开。我们的研究结果表明,仅考虑位向排列而忽略流体动力效应的自推进介质的干燥模型过于简化,不足以描述群集细菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamical Mechanisms for Coordinating Long-term Working Memory Based on the Precision of Spike-timing in Cortical Neurons. Biomechanically Informed Image Registration for Patient-Specific Aortic Valve Strain Analysis. Fully 3D Unrolled Magnetic Resonance Fingerprinting Reconstruction via Staged Pretraining and Implicit Gridding. An open-source computational framework for immersed fluid-structure interaction modeling using FEBio and MFEM. A tissue-informed deep learning-based method for positron range correction in preclinical 68Ga PET imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1