Improving Deformable Image Registration Accuracy through a Hybrid Similarity Metric and CycleGAN Based Auto-Segmentation.

ArXiv Pub Date : 2024-11-25
Keyur D Shah, James A Shackleford, Nagarajan Kandasamy, Gregory C Sharp
{"title":"Improving Deformable Image Registration Accuracy through a Hybrid Similarity Metric and CycleGAN Based Auto-Segmentation.","authors":"Keyur D Shah, James A Shackleford, Nagarajan Kandasamy, Gregory C Sharp","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Deformable image registration (DIR) plays a critical role in adaptive radiation therapy (ART) to accommodate anatomical changes. However, conventional intensity-based DIR methods face challenges when registering images with unequal image intensities. In these cases, DIR accuracy can be improved using a hybrid image similarity metric which matches both image intensities and the location of known structures. This study aims to assess DIR accuracy using a hybrid similarity metric and leveraging CycleGAN-based intensity correction and auto-segmentation and comparing performance across three DIR workflows.</p><p><strong>Methods: </strong>The proposed approach incorporates a hybrid image similarity metric combining a point-to-distance (PD) score and intensity similarity score. Synthetic CT (sCT) images were generated using a 2D CycleGAN model trained on unpaired CT and CBCT images, improving soft-tissue contrast in CBCT images. The performance of the approach was evaluated by comparing three DIR workflows: (1) traditional intensity-based (No PD), (2) auto-segmented contours on sCT (CycleGAN PD), and (3) expert manual contours (Expert PD). A 3D U-Net model was then trained on two datasets comprising 56 3D images and validated on 14 independent cases to segment the prostate, bladder, and rectum. DIR accuracy was assessed using Dice Similarity Coefficient (DSC), 95% Hausdorff Distance (HD), and fiducial separation metrics.</p><p><strong>Results: </strong>The hybrid similarity metric significantly improved DIR accuracy. For the prostate, DSC increased from 0.61 ± 0.18 (No PD) to 0.82 ± 0.13 (CycleGAN PD) and 0.89 ± 0.05 (Expert PD), with corresponding reductions in 95% HD from 11.75 mm to 4.86 mm and 3.27 mm, respectively. Fiducial separation was also reduced from 8.95 mm to 4.07 mm (CycleGAN PD) and 4.11 mm (Expert PD) (p < 0.05). Improvements in alignment were also observed for the bladder and rectum, highlighting the method's robustness.</p><p><strong>Conclusion: </strong>A hybrid similarity metric that uses CycleGAN-based auto-segmentation presents a promising avenue for advancing DIR accuracy in ART. The study's findings suggest the potential for substantial enhancements in DIR accuracy by combining AI-based image correction and auto-segmentation with classical DIR.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623701/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Deformable image registration (DIR) plays a critical role in adaptive radiation therapy (ART) to accommodate anatomical changes. However, conventional intensity-based DIR methods face challenges when registering images with unequal image intensities. In these cases, DIR accuracy can be improved using a hybrid image similarity metric which matches both image intensities and the location of known structures. This study aims to assess DIR accuracy using a hybrid similarity metric and leveraging CycleGAN-based intensity correction and auto-segmentation and comparing performance across three DIR workflows.

Methods: The proposed approach incorporates a hybrid image similarity metric combining a point-to-distance (PD) score and intensity similarity score. Synthetic CT (sCT) images were generated using a 2D CycleGAN model trained on unpaired CT and CBCT images, improving soft-tissue contrast in CBCT images. The performance of the approach was evaluated by comparing three DIR workflows: (1) traditional intensity-based (No PD), (2) auto-segmented contours on sCT (CycleGAN PD), and (3) expert manual contours (Expert PD). A 3D U-Net model was then trained on two datasets comprising 56 3D images and validated on 14 independent cases to segment the prostate, bladder, and rectum. DIR accuracy was assessed using Dice Similarity Coefficient (DSC), 95% Hausdorff Distance (HD), and fiducial separation metrics.

Results: The hybrid similarity metric significantly improved DIR accuracy. For the prostate, DSC increased from 0.61 ± 0.18 (No PD) to 0.82 ± 0.13 (CycleGAN PD) and 0.89 ± 0.05 (Expert PD), with corresponding reductions in 95% HD from 11.75 mm to 4.86 mm and 3.27 mm, respectively. Fiducial separation was also reduced from 8.95 mm to 4.07 mm (CycleGAN PD) and 4.11 mm (Expert PD) (p < 0.05). Improvements in alignment were also observed for the bladder and rectum, highlighting the method's robustness.

Conclusion: A hybrid similarity metric that uses CycleGAN-based auto-segmentation presents a promising avenue for advancing DIR accuracy in ART. The study's findings suggest the potential for substantial enhancements in DIR accuracy by combining AI-based image correction and auto-segmentation with classical DIR.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metastability in networks of nonlinear stochastic integrate-and-fire neurons. On the linear scaling of entropy vs. energy in human brain activity, the Hagedorn temperature and the Zipf law. Timing consistency of T cell receptor activation in a stochastic model combining kinetic segregation and proofreading. Brain Morphology Normative modelling platform for abnormality and Centile estimation: Brain MoNoCle. Adversarial Attacks on Large Language Models in Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1