AI Foundation Models for Wearable Movement Data in Mental Health Research.

ArXiv Pub Date : 2025-01-14
Franklin Y Ruan, Aiwei Zhang, Jenny Y Oh, SouYoung Jin, Nicholas C Jacobson
{"title":"AI Foundation Models for Wearable Movement Data in Mental Health Research.","authors":"Franklin Y Ruan, Aiwei Zhang, Jenny Y Oh, SouYoung Jin, Nicholas C Jacobson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Pretrained foundation models and transformer architectures have driven the success of large language models (LLMs) and other modern AI breakthroughs. However, similar advancements in health data modeling remain limited due to the need for innovative adaptations. Wearable movement data offers a valuable avenue for exploration, as it's a core feature in nearly all commercial smartwatches, well established in clinical and mental health research, and the sequential nature of the data shares similarities to language. We introduce the Pretrained Actigraphy Transformer (PAT), the first open source foundation model designed for time-series wearable movement data. Leveraging transformer-based architectures and novel techniques, such as patch embeddings, and pretraining on data from 29,307 participants in a national U.S. sample, PAT achieves state-of-the-art performance in several mental health prediction tasks. PAT is also lightweight and easily interpretable, making it a robust tool for mental health research. GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pretrained foundation models and transformer architectures have driven the success of large language models (LLMs) and other modern AI breakthroughs. However, similar advancements in health data modeling remain limited due to the need for innovative adaptations. Wearable movement data offers a valuable avenue for exploration, as it's a core feature in nearly all commercial smartwatches, well established in clinical and mental health research, and the sequential nature of the data shares similarities to language. We introduce the Pretrained Actigraphy Transformer (PAT), the first open source foundation model designed for time-series wearable movement data. Leveraging transformer-based architectures and novel techniques, such as patch embeddings, and pretraining on data from 29,307 participants in a national U.S. sample, PAT achieves state-of-the-art performance in several mental health prediction tasks. PAT is also lightweight and easily interpretable, making it a robust tool for mental health research. GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
注意力是所有你需要的活动?用于心理健康研究的可穿戴加速度计数据基础模型。
自20世纪70年代以来,可穿戴式加速度计(活动记录仪)为临床见解提供了有价值的数据,随着可穿戴设备的不断普及,它变得越来越重要。活动描记在研究和临床环境中的有效性在很大程度上取决于所使用的建模架构。为了解决这个问题,我们开发了预训练活动图转换器(PAT),这是第一个专门用于处理活动图的预训练和完全基于注意力的模型。在NHANES中,对29,307名参与者的活动描记进行了预训练,使PAT能够在心理健康领域的各种活动描记预测任务中进行微调,即使在数据有限的情况下也能提供最先进的性能。例如,当训练预测苯二氮卓类药物的使用时,仅使用500名标记参与者的活动描记图,PAT在最佳基线上实现了8.8个百分点的AUC改善。PAT拥有不到200万个参数和内置的模型可解释性,功能强大,但易于在卫生研究环境中部署。GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grade Inflation in Generative Models. A recent evaluation on the performance of LLMs on radiation oncology physics using questions of randomly shuffled options. A Systematic Computational Framework for Practical Identifiability Analysis in Mathematical Models Arising from Biology. Back to the Continuous Attractor. Inferring resource competition in microbial communities from time series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1