{"title":"Buckling analysis of structures with local abnormality using non-uniform spline finite strip method","authors":"Hao Yu, Pizhong Qiao","doi":"10.1016/j.compstruc.2024.107597","DOIUrl":null,"url":null,"abstract":"<div><div>Significance of structural components with local abnormality in buckling analysis has drawn considerable interest from researchers. A versatile and effective non-uniform spline finite strip method (N-u SFSM) is developed to allow for mesh refinement in local zones, enabling a comprehensive analysis of buckling characteristics of structures with local abnormality. The inclusion of non-uniform spline functions facilitates the precise modeling and refinement of localized abnormal (e.g., damage or geometric change) regions, leading to more accurate forecasts of fluctuations in buckling modes compared to the original finite strip method. The convergence and validation studies confirm the capability of N-u SFSM to accurately predict buckling behaviors in structures with local abnormality. The computational efficiency is significantly enhanced through the spline knot reduction achieved by optimizing the spline interpolation points, resulting in time and resource savings. The versatility of the N-u SFSM is demonstrated through the successful applications in various scenarios involving the locally-damaged channels, plates, and cylinders with differing damage sizes, types, locations, degrees, numbers, and shapes. The results confirm that the developed N-u SFSM, as a highly efficient and practical numerical technique, can accurately predict the buckling behaviors of both intact and damaged structures exhibiting local abnormalities, thereby providing valuable insights for structural analysis and design.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"307 ","pages":"Article 107597"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924003262","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Significance of structural components with local abnormality in buckling analysis has drawn considerable interest from researchers. A versatile and effective non-uniform spline finite strip method (N-u SFSM) is developed to allow for mesh refinement in local zones, enabling a comprehensive analysis of buckling characteristics of structures with local abnormality. The inclusion of non-uniform spline functions facilitates the precise modeling and refinement of localized abnormal (e.g., damage or geometric change) regions, leading to more accurate forecasts of fluctuations in buckling modes compared to the original finite strip method. The convergence and validation studies confirm the capability of N-u SFSM to accurately predict buckling behaviors in structures with local abnormality. The computational efficiency is significantly enhanced through the spline knot reduction achieved by optimizing the spline interpolation points, resulting in time and resource savings. The versatility of the N-u SFSM is demonstrated through the successful applications in various scenarios involving the locally-damaged channels, plates, and cylinders with differing damage sizes, types, locations, degrees, numbers, and shapes. The results confirm that the developed N-u SFSM, as a highly efficient and practical numerical technique, can accurately predict the buckling behaviors of both intact and damaged structures exhibiting local abnormalities, thereby providing valuable insights for structural analysis and design.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.