{"title":"Design of compliant thermal actuators using topology optimization involving design-dependent thermal convection and pressure load","authors":"Shuya Onodera , Takayuki Yamada","doi":"10.1016/j.compstruc.2024.107600","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a topology optimization method for thermal actuators that accounts for boundary conditions influenced by variables such as thermal convection and pressure load. Thermal actuators with gripper-like designs are essential for handling hot and brittle materials. The objective of this study is to design actuator shapes that achieve an optimal balance between flexibility and stiffness in high-temperature environments. Unlike previous studies that consider load conditions imposed on fixed boundaries within the design domain, this research introduces a high-temperature fluid as the driving source and employs a novel approach to boundary condition setting by integrating fictitious physical problems. This approach allows for the precise specification of various boundary conditions across multiple domains. A weighted-sum method is applied to optimize three objective functions related to deformability, stiffness, and thermal diffusibility of the actuators. To address the issue of excessively thin structures compromising deformability and the poor convergence of the optimization process, stress constraints based on the optimization history are introduced. The proposed method is validated through numerical examples, demonstrating improvements in structural deformability while controlling deformation on the target surface plane. The numerical results confirm that the objective function decreases and stress is suppressed, verifying the effectiveness of the proposed approach.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"307 ","pages":"Article 107600"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924003298","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a topology optimization method for thermal actuators that accounts for boundary conditions influenced by variables such as thermal convection and pressure load. Thermal actuators with gripper-like designs are essential for handling hot and brittle materials. The objective of this study is to design actuator shapes that achieve an optimal balance between flexibility and stiffness in high-temperature environments. Unlike previous studies that consider load conditions imposed on fixed boundaries within the design domain, this research introduces a high-temperature fluid as the driving source and employs a novel approach to boundary condition setting by integrating fictitious physical problems. This approach allows for the precise specification of various boundary conditions across multiple domains. A weighted-sum method is applied to optimize three objective functions related to deformability, stiffness, and thermal diffusibility of the actuators. To address the issue of excessively thin structures compromising deformability and the poor convergence of the optimization process, stress constraints based on the optimization history are introduced. The proposed method is validated through numerical examples, demonstrating improvements in structural deformability while controlling deformation on the target surface plane. The numerical results confirm that the objective function decreases and stress is suppressed, verifying the effectiveness of the proposed approach.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.