Distinct effects of PTST2b and MRC on starch granule morphogenesis in potato tubers

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2024-12-10 DOI:10.1111/pbi.14505
Anton Hochmuth, Matthew Carswell, Aaron Rowland, Danielle Scarbrough, Lara Esch, Nitin Uttam Kamble, Jeffrey W. Habig, David Seung
{"title":"Distinct effects of PTST2b and MRC on starch granule morphogenesis in potato tubers","authors":"Anton Hochmuth, Matthew Carswell, Aaron Rowland, Danielle Scarbrough, Lara Esch, Nitin Uttam Kamble, Jeffrey W. Habig, David Seung","doi":"10.1111/pbi.14505","DOIUrl":null,"url":null,"abstract":"The molecular mechanisms underpinning the formation of the large, ellipsoidal starch granules of potato tuber are poorly understood. Here, we demonstrate the distinct effects of PROTEIN TARGETING TO STARCH2b (PTST2b) and MYOSIN RESEMBLING CHLOROPLAST PROTEIN (MRC) on tuber starch granule morphology. A gene duplication event in the <i>Solanaceae</i> resulted in two PTST2 paralogs (PTST2a and PTST2b). PTST2b is expressed in potato tubers, and unlike PTST2a, it had no detectable interaction with STARCH SYNTHASE 4. MRC expression was detectable in leaves, but not in tubers. Using transgenic potato lines in the variety Clearwater Russet, we demonstrate that MRC overexpression leads to the formation of granules with aberrant shapes, many of which arise from multiple initiation points. Silencing PTST2b led to the production of striking near-spherical granules, each arising from a single, central initiation point. Contrary to all reported PTST2 mutants in other species, we observed no change in the number of granules per cell in these lines, suggesting PTST2b is specifically involved in the control of starch granule shape. Starch content and tuber yield per plant were not affected by PTST2b silencing, but MRC overexpression led to strong decreases in both parameters. Notably, the spherical granules in PTST2b silencing lines had a distinctively altered pasting profile, with higher peak and final viscosity than the wild type. Thus, PTST2b and MRC are promising target genes for altering starch granule size and shape in potato tubers, and can be used to create novel starches with altered physicochemical and/or functional properties.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"5 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14505","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The molecular mechanisms underpinning the formation of the large, ellipsoidal starch granules of potato tuber are poorly understood. Here, we demonstrate the distinct effects of PROTEIN TARGETING TO STARCH2b (PTST2b) and MYOSIN RESEMBLING CHLOROPLAST PROTEIN (MRC) on tuber starch granule morphology. A gene duplication event in the Solanaceae resulted in two PTST2 paralogs (PTST2a and PTST2b). PTST2b is expressed in potato tubers, and unlike PTST2a, it had no detectable interaction with STARCH SYNTHASE 4. MRC expression was detectable in leaves, but not in tubers. Using transgenic potato lines in the variety Clearwater Russet, we demonstrate that MRC overexpression leads to the formation of granules with aberrant shapes, many of which arise from multiple initiation points. Silencing PTST2b led to the production of striking near-spherical granules, each arising from a single, central initiation point. Contrary to all reported PTST2 mutants in other species, we observed no change in the number of granules per cell in these lines, suggesting PTST2b is specifically involved in the control of starch granule shape. Starch content and tuber yield per plant were not affected by PTST2b silencing, but MRC overexpression led to strong decreases in both parameters. Notably, the spherical granules in PTST2b silencing lines had a distinctively altered pasting profile, with higher peak and final viscosity than the wild type. Thus, PTST2b and MRC are promising target genes for altering starch granule size and shape in potato tubers, and can be used to create novel starches with altered physicochemical and/or functional properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
Meiotic crossovers revealed by differential visualization of homologous chromosomes using enhanced haplotype oligo-painting in cucumber Distinct effects of PTST2b and MRC on starch granule morphogenesis in potato tubers Reduced content of gamma-aminobutyric acid enhances resistance to bacterial wilt disease in tomato An R2R3-type MYB transcription factor, GmMYB77, negatively regulates isoflavone accumulation in soybean [Glycine max (L.) Merr.] Natural pigments derived from plants and microorganisms: classification, biosynthesis, and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1