Plant Growth-Promoting Yeasts (PGPYs) as a sustainable solution to mitigate salt-induced stress on zucchini plant growth

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE Biology and Fertility of Soils Pub Date : 2024-12-11 DOI:10.1007/s00374-024-01885-y
Chiara Ruspi, Debora Casagrande Pierantoni, Angela Conti, Roberto Scarponi, Laura Corte, Gianluigi Cardinali
{"title":"Plant Growth-Promoting Yeasts (PGPYs) as a sustainable solution to mitigate salt-induced stress on zucchini plant growth","authors":"Chiara Ruspi, Debora Casagrande Pierantoni, Angela Conti, Roberto Scarponi, Laura Corte, Gianluigi Cardinali","doi":"10.1007/s00374-024-01885-y","DOIUrl":null,"url":null,"abstract":"<p>Among the long-term sustainable solutions to mitigate saline stress on plants, the use of plant growth promoting microorganisms (PGP) is considered very promising. While most of the efforts have been devoted to the selection and use of bacterial PGPs, little has been proposed with yeast PGP (PGPYs). In this study, three PGPY strains belonging to <i>Naganishia uzbekistanensis</i>,<i> Papiliotrema terrestris</i> and <i>Solicoccozyma phenolica</i> were employed singularly and in a consortium to mitigate salt stress of zucchini (<i>Cucurbita pepo</i>). The results demonstrated that these yeasts, when applied to salt-amended soil, mitigated the growth inhibition caused by NaCl. Among the three species, <i>N. uzbekistanensis</i> and <i>P. terrestris</i> showed the most significant improvements in plant performance, with <i>N. uzbekistanensis</i> exhibiting hormetic effects under salt stress by improving root length and dry plant biomass. In general, the root system was the most affected part of the plants due to the presence of the yeasts. The entire rhizosphere bacterial microbiota was significantly influenced by the addition of PGPYs, while the mycobiota was dominated by the introduced yeasts. Metabolomic fingerprinting using FTIR revealed modifications in hemicellulose and silica content, indicating that PGPY inoculation impacts not only the plant but also the soil and rhizosphere microorganisms.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"10 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01885-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Among the long-term sustainable solutions to mitigate saline stress on plants, the use of plant growth promoting microorganisms (PGP) is considered very promising. While most of the efforts have been devoted to the selection and use of bacterial PGPs, little has been proposed with yeast PGP (PGPYs). In this study, three PGPY strains belonging to Naganishia uzbekistanensis, Papiliotrema terrestris and Solicoccozyma phenolica were employed singularly and in a consortium to mitigate salt stress of zucchini (Cucurbita pepo). The results demonstrated that these yeasts, when applied to salt-amended soil, mitigated the growth inhibition caused by NaCl. Among the three species, N. uzbekistanensis and P. terrestris showed the most significant improvements in plant performance, with N. uzbekistanensis exhibiting hormetic effects under salt stress by improving root length and dry plant biomass. In general, the root system was the most affected part of the plants due to the presence of the yeasts. The entire rhizosphere bacterial microbiota was significantly influenced by the addition of PGPYs, while the mycobiota was dominated by the introduced yeasts. Metabolomic fingerprinting using FTIR revealed modifications in hemicellulose and silica content, indicating that PGPY inoculation impacts not only the plant but also the soil and rhizosphere microorganisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物生长促进酵母(PGPYs)作为缓解盐胁迫对西葫芦植物生长的可持续解决方案
在缓解植物盐胁迫的长期可持续解决方案中,植物生长促进微生物(PGP)的使用被认为是非常有前途的。虽然大多数的努力都致力于细菌PGP的选择和使用,但很少有人提出酵母PGP (PGPYs)。本研究分别利用3株PGPY菌株(Naganishia uzbekistanensis、Papiliotrema terrestris和Solicoccozyma phenolica)单独和联合使用,缓解了西葫芦(Cucurbita pepo)的盐胁迫。结果表明,在盐渍土壤中施用这些酵母菌可以减轻NaCl对其生长的抑制作用。在3种植物中,尤孜别克斯坦和地荆对植物性能的改善最为显著,尤孜别克斯坦通过提高根长和干生物量表现出在盐胁迫下的致热效应。一般来说,由于酵母的存在,根系是植物受影响最大的部分。PGPYs的添加对整个根际细菌菌群有显著影响,而真菌菌群以引入酵母为主。利用FTIR进行代谢组学指纹图谱分析,揭示了半纤维素和二氧化硅含量的变化,表明接种PGPY不仅影响植物,还影响土壤和根际微生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
期刊最新文献
Forest litter decomposition stimulates heterotrophic nitrogen fixation by driving diazotrophic community interactions Arbuscular and fine root-endophytic mycorrhizal fungi forage differently for nutrients in a seminatural temperate grassland Liming enhances the abundance and stability of nitrogen-cycling microbes: the buffering effect of long-term lime application Bio-organic fertilizer enhances soil mineral solubilization, microbial community stability, and fruit quality in an 8-year watermelon continuous cropping system Can potato cropping be made regenerative? Cover crops and dead organic mulch support soil microbial activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1