Low-firing BaMg₂V₂O₈-based composites featuring novel ultra-low permittivity and low loss for dual-band 6G antenna applications

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-01-01 DOI:10.1016/j.mtphys.2024.101624
Burhan Ullah , Yixin Yang , Millicent Appiah , Yuting Xiao , Daniel Q. Tan
{"title":"Low-firing BaMg₂V₂O₈-based composites featuring novel ultra-low permittivity and low loss for dual-band 6G antenna applications","authors":"Burhan Ullah ,&nbsp;Yixin Yang ,&nbsp;Millicent Appiah ,&nbsp;Yuting Xiao ,&nbsp;Daniel Q. Tan","doi":"10.1016/j.mtphys.2024.101624","DOIUrl":null,"url":null,"abstract":"<div><div>The BaMg<sub>2</sub>V<sub>2</sub>O<sub>8</sub>-based ceramic composites provide a high-performance, industrially viable solution, bridging the gap between polymer and ceramic dielectrics. While polymer-dielectrics are favored in flexible electronics for their low permittivity (ε<sub>r</sub>) and compatibility with low-temperature processing, they fall short in thermal stability, mechanical strength, and long-term reliability that ceramics excel in. Our newly developed ceramic composites address these limitations by featuring an ultra-low ε<sub>r</sub>, which is essential for 6G communication. Significant efforts have been directed towards optimizing the microwave dielectric properties of the composites by manipulating lattice structures and polarization mechanisms. This has led to the successful development of Ba₀.₈₅Sr₀.₁₅Mg₁.₉₈Zn₀.₀₂V₂O₈–<em>x</em>wt.%Li₂CO₃ ceramic composites within the composition range of 0.0 ≤ <em>x</em> ≤ 1.75. This tailored composition results in a solid solution that coexists with both tetragonal (T-phase: ε<sub>r</sub> = 13.03, Q × f = 55,356 GHz at f ≥ 9 GHz, τ<sub>f</sub> = −5.3 ppm/°C at <em>x</em> = 0.75) and orthorhombic phases (O-phase: ε<sub>r</sub> = 3.96, Q × f = 73,775 GHz at f ≥ 17 GHz, τ<sub>f</sub> ∼ −6.1 ppm/°C at <em>x</em> = 0.75), achieving an ultra-low ε<sub>r</sub> with balanced Q × f values and a temperature coefficient of resonance frequency after sintering at approximately 840 °C/4h. The variation in ε<sub>r</sub> and Q × f-values is attributed to the distortion and deformation of Ba-O<sub>8</sub> polyhedra, as well as the full width at half maximum (FWHM) values of the Eg<sub>(Ba)</sub> and A<sub>1g</sub> Raman modes. The phase coexistence enables tunability of dual-frequency band antennas, providing flexible solutions for advanced communication.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"50 ","pages":"Article 101624"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324003006","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The BaMg2V2O8-based ceramic composites provide a high-performance, industrially viable solution, bridging the gap between polymer and ceramic dielectrics. While polymer-dielectrics are favored in flexible electronics for their low permittivity (εr) and compatibility with low-temperature processing, they fall short in thermal stability, mechanical strength, and long-term reliability that ceramics excel in. Our newly developed ceramic composites address these limitations by featuring an ultra-low εr, which is essential for 6G communication. Significant efforts have been directed towards optimizing the microwave dielectric properties of the composites by manipulating lattice structures and polarization mechanisms. This has led to the successful development of Ba₀.₈₅Sr₀.₁₅Mg₁.₉₈Zn₀.₀₂V₂O₈–xwt.%Li₂CO₃ ceramic composites within the composition range of 0.0 ≤ x ≤ 1.75. This tailored composition results in a solid solution that coexists with both tetragonal (T-phase: εr = 13.03, Q × f = 55,356 GHz at f ≥ 9 GHz, τf = −5.3 ppm/°C at x = 0.75) and orthorhombic phases (O-phase: εr = 3.96, Q × f = 73,775 GHz at f ≥ 17 GHz, τf ∼ −6.1 ppm/°C at x = 0.75), achieving an ultra-low εr with balanced Q × f values and a temperature coefficient of resonance frequency after sintering at approximately 840 °C/4h. The variation in εr and Q × f-values is attributed to the distortion and deformation of Ba-O8 polyhedra, as well as the full width at half maximum (FWHM) values of the Eg(Ba) and A1g Raman modes. The phase coexistence enables tunability of dual-frequency band antennas, providing flexible solutions for advanced communication.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低燃BaMg₂V₂O₈基复合材料,具有新颖的超低介电常数和低损耗,适用于双频6G天线
基于bamg2v2o8的陶瓷复合材料提供了一种高性能,工业上可行的解决方案,弥合了聚合物和陶瓷介电材料之间的差距。虽然聚合物介电材料因其低介电常数(εr)和与低温加工的兼容性而在柔性电子产品中受到青睐,但它们在热稳定性、机械强度和长期可靠性方面缺乏陶瓷所擅长的。我们新开发的陶瓷复合材料通过具有超低的εr来解决这些限制,这对于6G通信至关重要。通过控制晶格结构和极化机制来优化复合材料的微波介电性能。这导致了Ba₀₈₅Sr₀₁₅Mg₁₉₈Zn₀₀₂V₂O₈-xwt的成功开发。%Li₂CO₃陶瓷复合材料的成分范围在0.0≤x≤1.75。这种定制的组合导致固溶体与四方相(t相:εr = 13.03,在f≥9GHz时Q×f = 55356 GHz,在x = 0.75时τf = -5.3 ppm/°C)和正交相(o相:εr = 3.96,在f≥17GHz时Q×f = 73775 GHz,在x = 0.75时τf ~ -6.1 ppm/°C)共存,实现了Q×f值平衡的超低εr和约840°C/4h烧结后的共振频率温度系数。εr和Q×f-values的变化主要是由于Ba- o8多面体的畸变和变形,以及Eg(Ba)和A1g拉曼模式的半最大值全宽度(FWHM)值。相位共存使双频天线具有可调性,为高级通信提供灵活的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Li2CO3
阿拉丁
V2O5
阿拉丁
ZnO
阿拉丁
MgO
阿拉丁
SrCO3
阿拉丁
BaCO3
阿拉丁
Li2CO3
阿拉丁
V2O5
阿拉丁
ZnO
阿拉丁
MgO
阿拉丁
SrCO3
阿拉丁
BaCO3
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
NEA GaAs Photocathode for Electron Source: From Growth, Cleaning, Activation to Performance Abnormal thermal conductivity increase in β-Ga2O3 by an unconventional bonding mechanism using machine-learning potential MXene Nb2C/MoS2 heterostructure: Nonlinear optical properties and a new broadband saturable absorber for ultrafast photonics Low-temperature annealing induces superior shock-resistant performance in FeCoCrNiCu high-entropy alloy Effectively tuning phonon transport across Al/nonmetal interfaces through controlling interfacial bonding strength without modifying thermal conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1