Feng-Jun Li, Shuai Wang, Rui Zhong, Meng-Xia Hu, Yue jiang, Meijiu Zheng, Mu Wang, Xiangping Li, Ruwen Peng, Zi-Lan Deng
{"title":"Metasurface polarization optics: From classical to quantum","authors":"Feng-Jun Li, Shuai Wang, Rui Zhong, Meng-Xia Hu, Yue jiang, Meijiu Zheng, Mu Wang, Xiangping Li, Ruwen Peng, Zi-Lan Deng","doi":"10.1063/5.0226286","DOIUrl":null,"url":null,"abstract":"Metasurface polarization optics, manipulating polarization using metasurfaces composed of subwavelength anisotropic nanostructure array, has enabled a lot of innovative integrated strategies for versatile and on-demand polarization generation, modulation, and detection. Compared with conventional bulky optical elements for polarization control, metasurface polarization optics provides a feasible platform in a subwavelength scale to build ultra-compact and multifunctional polarization devices, greatly shrinking the size of the whole polarized optical system and network. Here, we review the recent progresses of metasurface polarization optics in both classical and quantum regimes, including uniform and spatially varying polarization-manipulating devices. Basic polarization optical elements such as meta-waveplate, meta-polarizer, and resonant meta-devices with polarization singularities provide compact means to generate and modulate uniform polarization beams. Spatial-varying polarization manipulation by employing the pixelation feature of metasurfaces, leading to advanced diffraction and imaging functionalities, such as vectorial holography, classic and quantum polarization imaging, quantum polarization entanglement, quantum interference, and modulation. Substituting conventional polarization optics, metasurface approaches pave the way for on-chip classic or quantum information processing, flourishing advanced applications in displaying, communication, imaging, and computing.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"47 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0226286","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Metasurface polarization optics, manipulating polarization using metasurfaces composed of subwavelength anisotropic nanostructure array, has enabled a lot of innovative integrated strategies for versatile and on-demand polarization generation, modulation, and detection. Compared with conventional bulky optical elements for polarization control, metasurface polarization optics provides a feasible platform in a subwavelength scale to build ultra-compact and multifunctional polarization devices, greatly shrinking the size of the whole polarized optical system and network. Here, we review the recent progresses of metasurface polarization optics in both classical and quantum regimes, including uniform and spatially varying polarization-manipulating devices. Basic polarization optical elements such as meta-waveplate, meta-polarizer, and resonant meta-devices with polarization singularities provide compact means to generate and modulate uniform polarization beams. Spatial-varying polarization manipulation by employing the pixelation feature of metasurfaces, leading to advanced diffraction and imaging functionalities, such as vectorial holography, classic and quantum polarization imaging, quantum polarization entanglement, quantum interference, and modulation. Substituting conventional polarization optics, metasurface approaches pave the way for on-chip classic or quantum information processing, flourishing advanced applications in displaying, communication, imaging, and computing.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.