Dominant Edaphic Controls on Particulate Organic Carbon in Global Soils

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2024-12-11 DOI:10.1111/gcb.17619
Ziyu Guo, Jianzhao Liu, Liyuan He, Jorge L. Mazza Rodrigues, Ning Chen, Yunjiang Zuo, Nannan Wang, Xinhao Zhu, Ying Sun, Lihua Zhang, Yanyu Song, Dengjun Zhang, Fenghui Yuan, Changchun Song, Xiaofeng Xu
{"title":"Dominant Edaphic Controls on Particulate Organic Carbon in Global Soils","authors":"Ziyu Guo, Jianzhao Liu, Liyuan He, Jorge L. Mazza Rodrigues, Ning Chen, Yunjiang Zuo, Nannan Wang, Xinhao Zhu, Ying Sun, Lihua Zhang, Yanyu Song, Dengjun Zhang, Fenghui Yuan, Changchun Song, Xiaofeng Xu","doi":"10.1111/gcb.17619","DOIUrl":null,"url":null,"abstract":"The current soil carbon paradigm puts particulate organic carbon (POC) as one of the major components of soil organic carbon worldwide, highlighting its pivotal role in carbon mitigation. In this study, we compiled a global dataset of 3418 data points of POC concentration in soils and applied empirical modeling and machine learning algorithms to investigate the spatial variation in POC concentration and its controls. The global POC concentration in topsoil (0–30 cm) is estimated as 3.02 g C/kg dry soil, exhibiting a declining trend from polar regions to the equator. Boreal forests contain the highest POC concentration, averaging at 4.58 g C/kg dry soil, whereas savannas exhibit the lowest at 1.41 g C/kg dry soil. We developed a global map of soil POC density in soil profiles of 0-30 cm and 0–100 cm with an empirical model. The global stock of POC is 158.15 Pg C for 0–30 cm and 222.75 Pg C for 0–100 cm soil profiles with a substantial spatial variation. Analysis with a machine learning algorithm concluded the predominate controls of edaphic factors (i.e., bulk density and soil C content) on POC concentration across biomes. However, the secondary controls vary among biomes, with solid climate controls in grassland, pasture, and shrubland, while strong vegetation controls in forests. The biome-level estimates and maps of POC density provide a benchmark for modeling C fractions in soils; the various controls on POC suggest incorporating biological and physiochemical mechanisms in soil C models to assess and forecast the soil POC dynamics in response to global change.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"38 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/gcb.17619","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

The current soil carbon paradigm puts particulate organic carbon (POC) as one of the major components of soil organic carbon worldwide, highlighting its pivotal role in carbon mitigation. In this study, we compiled a global dataset of 3418 data points of POC concentration in soils and applied empirical modeling and machine learning algorithms to investigate the spatial variation in POC concentration and its controls. The global POC concentration in topsoil (0–30 cm) is estimated as 3.02 g C/kg dry soil, exhibiting a declining trend from polar regions to the equator. Boreal forests contain the highest POC concentration, averaging at 4.58 g C/kg dry soil, whereas savannas exhibit the lowest at 1.41 g C/kg dry soil. We developed a global map of soil POC density in soil profiles of 0-30 cm and 0–100 cm with an empirical model. The global stock of POC is 158.15 Pg C for 0–30 cm and 222.75 Pg C for 0–100 cm soil profiles with a substantial spatial variation. Analysis with a machine learning algorithm concluded the predominate controls of edaphic factors (i.e., bulk density and soil C content) on POC concentration across biomes. However, the secondary controls vary among biomes, with solid climate controls in grassland, pasture, and shrubland, while strong vegetation controls in forests. The biome-level estimates and maps of POC density provide a benchmark for modeling C fractions in soils; the various controls on POC suggest incorporating biological and physiochemical mechanisms in soil C models to assess and forecast the soil POC dynamics in response to global change.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Dominant Edaphic Controls on Particulate Organic Carbon in Global Soils Marine Protected Areas That Preserve Trophic Cascades Promote Resilience of Kelp Forests to Marine Heatwaves Phosphorus Cycling as a Function of Soil Microbiome Soil Organic Carbon Increases With Decreasing Microbial Carbon Use Efficiency During Vegetation Restoration Biogeography of a Global Plant Invader: From the Evolutionary History to Future Distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1