Bifunctional Bi0.98Sm0.02FeO3/g-C3N4 Piezocatalyst for Simultaneous H2 and H2O2 Production

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-12-11 DOI:10.1021/acsami.4c15127
Hua Zeng, Chuanbao Liu, Bingxin Lan, Mengxi Tan, Chengye Yu, Yanjing Su, Lijie Qiao, Yang Bai
{"title":"Bifunctional Bi0.98Sm0.02FeO3/g-C3N4 Piezocatalyst for Simultaneous H2 and H2O2 Production","authors":"Hua Zeng, Chuanbao Liu, Bingxin Lan, Mengxi Tan, Chengye Yu, Yanjing Su, Lijie Qiao, Yang Bai","doi":"10.1021/acsami.4c15127","DOIUrl":null,"url":null,"abstract":"Piezocatalysis portrays a promising alternative for producing hydrogen (H<sub>2</sub>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in a clean and safe way, but the simultaneous enhancement of both properties remains challenging. In this study, a BiFeO<sub>3</sub>-based bifunctional piezocatalytic strategy via Sm doping and g-C<sub>3</sub>N<sub>4</sub> compositing (Bi<sub>0.98</sub>Sm<sub>0.02</sub>FeO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub>) was proposed for efficient simultaneous H<sub>2</sub> and H<sub>2</sub>O<sub>2</sub> production. Benefiting from the synergistic effect between the optimized energy band structure and piezo-generated charges, the performances of hydrogen evolution reaction (HER) and water oxidation reaction (WOR) are both enhanced remarkably. As a result, the evolution rates of BSFO/g-C<sub>3</sub>N<sub>4</sub> for pure water splitting into H<sub>2</sub> and H<sub>2</sub>O<sub>2</sub> simultaneously reach 988 and 214 μmol g<sup>–1</sup> h<sup>–1</sup> without any sacrificial agent, which is 4.6 and 7.6 times higher than those of pure BiFeO<sub>3</sub>. Theoretical calculations reveal the critical role of this optimization in reducing the adsorption energy barriers of HER and WOR intermediates by factors of 10.83 and 12.38, respectively. This study broadens new insight into the design of efficient piezocatalysts for water splitting.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"13 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15127","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Piezocatalysis portrays a promising alternative for producing hydrogen (H2) and hydrogen peroxide (H2O2) in a clean and safe way, but the simultaneous enhancement of both properties remains challenging. In this study, a BiFeO3-based bifunctional piezocatalytic strategy via Sm doping and g-C3N4 compositing (Bi0.98Sm0.02FeO3/g-C3N4) was proposed for efficient simultaneous H2 and H2O2 production. Benefiting from the synergistic effect between the optimized energy band structure and piezo-generated charges, the performances of hydrogen evolution reaction (HER) and water oxidation reaction (WOR) are both enhanced remarkably. As a result, the evolution rates of BSFO/g-C3N4 for pure water splitting into H2 and H2O2 simultaneously reach 988 and 214 μmol g–1 h–1 without any sacrificial agent, which is 4.6 and 7.6 times higher than those of pure BiFeO3. Theoretical calculations reveal the critical role of this optimization in reducing the adsorption energy barriers of HER and WOR intermediates by factors of 10.83 and 12.38, respectively. This study broadens new insight into the design of efficient piezocatalysts for water splitting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压电催化是以清洁、安全的方式生产氢气(H2)和过氧化氢(H2O2)的一种前景广阔的替代方法,但同时增强这两种特性仍具有挑战性。本研究提出了一种基于 BiFeO3 的双功能压电催化策略,通过 Sm 掺杂和 g-C3N4 复合(Bi0.98Sm0.02FeO3/g-C3N4)来同时高效生产 H2 和 H2O2。得益于优化的能带结构和压电产生的电荷之间的协同效应,氢气进化反应(HER)和水氧化反应(WOR)的性能都得到了显著提高。因此,在不使用任何牺牲剂的情况下,BSFO/g-C3N4 将纯水同时分裂成 H2 和 H2O2 的进化速率分别达到 988 和 214 μmol g-1 h-1,是纯 BiFeO3 的 4.6 倍和 7.6 倍。理论计算显示,这种优化在降低 HER 和 WOR 中间体的吸附能垒方面发挥了关键作用,分别降低了 10.83 和 12.38 倍。这项研究为设计高效的压电催化剂进行水分离提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Construction of Mo2TiC2Tx MXene as a Superior Carrier to Support Ru–CuO Heterojunctions for Improving Alkaline Hydrogen Oxidation Bifunctional Bi0.98Sm0.02FeO3/g-C3N4 Piezocatalyst for Simultaneous H2 and H2O2 Production Ultrasound-Triggered Nanogel Boosts Chemotherapy and Immunomodulation in Colorectal Cancer Lithium-Rich Layered Oxide Cathode Materials Modified for Lithium-Ion Batteries by CoS of a 3D Rock Salt Structure Assisted by PVP Nanoparticles-Dotted 3D Porous Nanofiber Skeleton Separator for Advanced Supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1