Critical Role of Low-Energy Protons in Radiation Testing of Perovskite Space Solar Cells

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Photonics Pub Date : 2024-12-11 DOI:10.1021/acsphotonics.4c01818
Tatchen B. Kum, Ahmad R. Kirmani
{"title":"Critical Role of Low-Energy Protons in Radiation Testing of Perovskite Space Solar Cells","authors":"Tatchen B. Kum, Ahmad R. Kirmani","doi":"10.1021/acsphotonics.4c01818","DOIUrl":null,"url":null,"abstract":"While perovskite solar cells (PSCs) are attractive for space applications, assessing their radiation tolerance requires adequate testing protocols. The primary criterion is that protons normally incident on a PSC during ground-based testing should create a uniform damage profile, mimicking the effect of the omnidirectional and polyenergetic proton spectrum in space orbit. However, given the low thicknesses of PSCs, proton energies >0.05 MeV can meet this criterion, leading to ambiguity regarding the precise energy needed for testing. Here, we highlight another major criterion: the optimal proton energy should also closely mimic the elemental vacancy distribution created in the perovskite by space protons. Using Monte Carlo ion-solid simulations, we first calculate the elemental vacancies in a PSC due to the low-Earth orbit (LEO) proton spectrum. We then show that only ∼0.07 MeV protons can result in a similar distribution during ground-based testing. Higher energies (∼1 MeV) lead to 25% more iodine, 33% more lead, and 50% fewer hydrogen vacancies, failing to represent the space radiation environment accurately. Our results offer precise guidelines for PSC radiation testing, paving the way for more accurate, reliable, and comparable assessments.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"228 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01818","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While perovskite solar cells (PSCs) are attractive for space applications, assessing their radiation tolerance requires adequate testing protocols. The primary criterion is that protons normally incident on a PSC during ground-based testing should create a uniform damage profile, mimicking the effect of the omnidirectional and polyenergetic proton spectrum in space orbit. However, given the low thicknesses of PSCs, proton energies >0.05 MeV can meet this criterion, leading to ambiguity regarding the precise energy needed for testing. Here, we highlight another major criterion: the optimal proton energy should also closely mimic the elemental vacancy distribution created in the perovskite by space protons. Using Monte Carlo ion-solid simulations, we first calculate the elemental vacancies in a PSC due to the low-Earth orbit (LEO) proton spectrum. We then show that only ∼0.07 MeV protons can result in a similar distribution during ground-based testing. Higher energies (∼1 MeV) lead to 25% more iodine, 33% more lead, and 50% fewer hydrogen vacancies, failing to represent the space radiation environment accurately. Our results offer precise guidelines for PSC radiation testing, paving the way for more accurate, reliable, and comparable assessments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低能质子在钙钛矿空间太阳能电池辐射测试中的关键作用
虽然钙钛矿太阳能电池(PSCs)在空间应用中具有吸引力,但评估其辐射耐受性需要适当的测试方案。主要标准是,在地面测试中,通常入射到PSC上的质子应该产生均匀的损伤剖面,模仿空间轨道上全方位和多能质子谱的效果。然而,由于PSCs的厚度较低,质子能量>;0.05 MeV可以满足这一标准,导致测试所需的精确能量不明确。在这里,我们强调了另一个主要标准:最佳质子能量也应该接近于空间质子在钙钛矿中产生的元素空位分布。利用蒙特卡罗离子-固体模拟,我们首先计算了低地球轨道质子谱在PSC中的元素空位。然后我们表明,在地面测试中,只有~ 0.07 MeV的质子可以产生类似的分布。更高的能量(约1兆电子伏)导致碘增加25%,铅增加33%,氢空位减少50%,不能准确地表示空间辐射环境。我们的结果为PSC辐射检测提供了精确的指导,为更准确、可靠和可比较的评估铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
期刊最新文献
High-Sensitivity RGB–NIR Image Sensor with Dispersion-Engineered Meta-Optics X-Cut Lithium-Niobate-On-Insulator Polarization Beam Splitter with Anisotropic Subwavelength Perturbation Ultra-Fast Broadband Wavelength-Swept DFB Laser Array with 400 kHz Sweep Rate and 60 nm Continuous Tuning Range Two-Photon Endomicroscopic Imaging with Dielectric Metalens A Nonvolatile Programmable Photonic Crystal Nanobeam Cavity Based on Sb2Se3 for Photonic Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1