Ruiqi Xu, Hongfei OuYang, Zeqin Huang, Gang Huang, Jin Wang, Guizhen Zhang
{"title":"Nanoparticles-Dotted 3D Porous Nanofiber Skeleton Separator for Advanced Supercapacitors","authors":"Ruiqi Xu, Hongfei OuYang, Zeqin Huang, Gang Huang, Jin Wang, Guizhen Zhang","doi":"10.1021/acsami.4c17048","DOIUrl":null,"url":null,"abstract":"As one of the key components of supercapacitors (SCs), separators can directly affect the energy density, output power, and safety stability of SCs. However, it is still a challenge to prepare separators that simultaneously combine large pore size, ultrathin thickness, and excellent mechanical properties. Herein, a 5 μm ultrathin separator with a three-dimensional (3D) porous nanofiber skeleton dotted by fumed Al<sub>2</sub>O<sub>3</sub> nanoparticles has been developed using biaxial stretching. The unique structure of the 3D porous nanofiber skeleton ensures a mechanical strength up to 40 MPa, while the fumed Al<sub>2</sub>O<sub>3</sub> nanoparticles dotted on the 3D skeleton and the incorporation of the annealing process achieve a large average pore size of 130.8 nm, thus harmoniously resolving the contradiction between strength and large average pore size for ultrathin composite separators. The ultrathin thickness greatly shortens the ion transmission channel and effectively reduces ion transmission resistance. Moreover, the fumed Al<sub>2</sub>O<sub>3</sub> nanoparticles exposed on the surface of the 3D porous nanofiber skeleton enhance the wettability of the electrolyte as well as the thermal stability of the separator, achieving a low bulk resistance of 0.3 Ω and zero shrinkage at 130 °C. Due to the unique structure, UAPFS7 offers a better overall performance compared to commercial separators. These findings indicate that the developed separators exhibit excellent comprehensive performance and have the potential to promote the large-scale application of next-generation energy storage devices.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"48 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17048","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As one of the key components of supercapacitors (SCs), separators can directly affect the energy density, output power, and safety stability of SCs. However, it is still a challenge to prepare separators that simultaneously combine large pore size, ultrathin thickness, and excellent mechanical properties. Herein, a 5 μm ultrathin separator with a three-dimensional (3D) porous nanofiber skeleton dotted by fumed Al2O3 nanoparticles has been developed using biaxial stretching. The unique structure of the 3D porous nanofiber skeleton ensures a mechanical strength up to 40 MPa, while the fumed Al2O3 nanoparticles dotted on the 3D skeleton and the incorporation of the annealing process achieve a large average pore size of 130.8 nm, thus harmoniously resolving the contradiction between strength and large average pore size for ultrathin composite separators. The ultrathin thickness greatly shortens the ion transmission channel and effectively reduces ion transmission resistance. Moreover, the fumed Al2O3 nanoparticles exposed on the surface of the 3D porous nanofiber skeleton enhance the wettability of the electrolyte as well as the thermal stability of the separator, achieving a low bulk resistance of 0.3 Ω and zero shrinkage at 130 °C. Due to the unique structure, UAPFS7 offers a better overall performance compared to commercial separators. These findings indicate that the developed separators exhibit excellent comprehensive performance and have the potential to promote the large-scale application of next-generation energy storage devices.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.