Advanced Nosema bombycis Spore Identification: Single-Cell Raman Spectroscopy Combined with Self-Attention Mechanism-Guided Deep Learning

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-12-11 DOI:10.1021/acs.analchem.4c04817
Mengjiao Xue, Jianchang Hu, Xiaoyong He, Junhui Hu, Yuanpeng Li, Guiwen Wang, Xuhua Huang, Yufeng Yuan
{"title":"Advanced Nosema bombycis Spore Identification: Single-Cell Raman Spectroscopy Combined with Self-Attention Mechanism-Guided Deep Learning","authors":"Mengjiao Xue, Jianchang Hu, Xiaoyong He, Junhui Hu, Yuanpeng Li, Guiwen Wang, Xuhua Huang, Yufeng Yuan","doi":"10.1021/acs.analchem.4c04817","DOIUrl":null,"url":null,"abstract":"<i>Nosema bombycis</i> (Nb) has been considered a dangerous pathogen, which can spread rapidly through free spores. Nowadays, pebrine disease caused by Nb spores is a serious threat to silkworms, causing huge economic losses in both the silk industry and agriculture every year. Thus, how to accurately identify living Nb spores at a single-cell level is greatly demanded. In this work, we proposed a novel approach to accurately and conveniently identify Nb spores using single-cell Raman spectroscopy and a self-attention mechanism (SAM)-guided convolutional neural network (CNN) framework. With the assistance of SAM and data augmentation methods, an optimal CNN model can not only efficiently extract spectral feature information but also construct potential relationships of global spectral features. Compared with the case without both SAM and data augmentation, the average prediction accuracy of Nb spores from nine different <i>Bombyx mori</i> larvae can be significantly developed by almost 18%, from original 83.93 ± 4.88% to 99.27 ± 0.25%. To visualize the individual classification weight, a local feature extraction strategy named blocking individual Raman bands was proposed. According to the relative weight, these four Raman bands located at 1658, 1458, 1127, and 849 cm<sup>–1</sup>, mainly contribute to the high prediction accuracy of 99.27 ± 0.25%. It is worth noting that these Raman bands were also highlighted by the weight curve of SAM, indicating that the four Raman bands proposed by our optimal CNN model are reliable. Our findings clearly show that single-cell Raman spectroscopy combined with SAM-mediated CNN configuration has great potential in performing early diagnosis of Nb spores and monitoring pebrine disease.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"24 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04817","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nosema bombycis (Nb) has been considered a dangerous pathogen, which can spread rapidly through free spores. Nowadays, pebrine disease caused by Nb spores is a serious threat to silkworms, causing huge economic losses in both the silk industry and agriculture every year. Thus, how to accurately identify living Nb spores at a single-cell level is greatly demanded. In this work, we proposed a novel approach to accurately and conveniently identify Nb spores using single-cell Raman spectroscopy and a self-attention mechanism (SAM)-guided convolutional neural network (CNN) framework. With the assistance of SAM and data augmentation methods, an optimal CNN model can not only efficiently extract spectral feature information but also construct potential relationships of global spectral features. Compared with the case without both SAM and data augmentation, the average prediction accuracy of Nb spores from nine different Bombyx mori larvae can be significantly developed by almost 18%, from original 83.93 ± 4.88% to 99.27 ± 0.25%. To visualize the individual classification weight, a local feature extraction strategy named blocking individual Raman bands was proposed. According to the relative weight, these four Raman bands located at 1658, 1458, 1127, and 849 cm–1, mainly contribute to the high prediction accuracy of 99.27 ± 0.25%. It is worth noting that these Raman bands were also highlighted by the weight curve of SAM, indicating that the four Raman bands proposed by our optimal CNN model are reliable. Our findings clearly show that single-cell Raman spectroscopy combined with SAM-mediated CNN configuration has great potential in performing early diagnosis of Nb spores and monitoring pebrine disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Rounded Turn SLIM Design for High-Resolution Ion Mobility Mass Spectrometry Analysis of Small Molecules Advanced Nosema bombycis Spore Identification: Single-Cell Raman Spectroscopy Combined with Self-Attention Mechanism-Guided Deep Learning Imaging G-Quadruplex Nucleic Acids in Live Cells Using Thioflavin T and Fluorescence Lifetime Imaging Microscopy Development of a Dual-Epitope Nanobody-Based Immunosensor with MXenes@CNTs@AuNPs for Ultrasensitive Detection of Rotavirus. Forward-Scattering and Multiple-Scattering Sources of Errors in UV-Visible Spectroscopy of Microspheres.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1