Tailoring a Transition Metal Dual-Atom Catalyst via a Screening Descriptor in Li-S Batteries

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-12-11 DOI:10.1021/acsnano.4c12536
Yifei Wang, Conglei Xu, Beibei Li, Meng Tian, Mu Liu, Daming Zhu, Shixue Dou, Qiang Zhang, Jingyu Sun
{"title":"Tailoring a Transition Metal Dual-Atom Catalyst via a Screening Descriptor in Li-S Batteries","authors":"Yifei Wang, Conglei Xu, Beibei Li, Meng Tian, Mu Liu, Daming Zhu, Shixue Dou, Qiang Zhang, Jingyu Sun","doi":"10.1021/acsnano.4c12536","DOIUrl":null,"url":null,"abstract":"The adsorption-conversion paradigm of polysulfides during the sulfur reduction reaction (SRR) is appealing to tackle the shuttle effect in Li-S batteries, especially based upon atomically dispersed electrocatalysts. However, mechanistic insights into such catalytic systems remain ambiguous, limiting the understanding of sulfur electrochemistry and retarding the rational design of available catalysts. Herein, we systematically explore the polysulfide adsorption-conversion essence via a geminal-atom model system to understand the catalyst roles toward an expedited SRR. A descriptor involving an electronic structure index (<i>I</i><sub>ES</sub>) and electron affinity index (<i>I</i><sub>EA</sub>) is proposed, considering the geometric and electronic dictation within a Fe/M (M: 3d-block transition metal) atomic ensemble. With the aid of theoretical computation, we managed to identify the SRR thermodynamic/kinetic trends of Fe/M moieties. Guided by these findings, we in target design a Fe/V-NC dual-atom catalyst, which harvests a minimum <i>I</i><sub>ES</sub> and maximum <i>I</i><sub>EA</sub>, accordingly demonstrating enhanced polysulfide adsorption-conversion and improved full-cell performances. Such a consistency between a computational descriptor and experimental evidence highlights the importance of an atomic catalyst screen and selection for Li-S batteries.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"40 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12536","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The adsorption-conversion paradigm of polysulfides during the sulfur reduction reaction (SRR) is appealing to tackle the shuttle effect in Li-S batteries, especially based upon atomically dispersed electrocatalysts. However, mechanistic insights into such catalytic systems remain ambiguous, limiting the understanding of sulfur electrochemistry and retarding the rational design of available catalysts. Herein, we systematically explore the polysulfide adsorption-conversion essence via a geminal-atom model system to understand the catalyst roles toward an expedited SRR. A descriptor involving an electronic structure index (IES) and electron affinity index (IEA) is proposed, considering the geometric and electronic dictation within a Fe/M (M: 3d-block transition metal) atomic ensemble. With the aid of theoretical computation, we managed to identify the SRR thermodynamic/kinetic trends of Fe/M moieties. Guided by these findings, we in target design a Fe/V-NC dual-atom catalyst, which harvests a minimum IES and maximum IEA, accordingly demonstrating enhanced polysulfide adsorption-conversion and improved full-cell performances. Such a consistency between a computational descriptor and experimental evidence highlights the importance of an atomic catalyst screen and selection for Li-S batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在锂-S 电池中通过筛选描述符定制过渡金属双原子催化剂
硫还原反应(SRR)中多硫化物的吸附-转化模式对解决Li-S电池中的穿梭效应很有吸引力,特别是基于原子分散的电催化剂。然而,对这种催化系统的机理见解仍然不明确,限制了对硫电化学的理解,并阻碍了现有催化剂的合理设计。在此,我们通过双原子模型系统地探索了多硫化物吸附转化的本质,以了解催化剂对加速SRR的作用。考虑到Fe/M (M: 3d嵌段过渡金属)原子系综的几何和电子口述,提出了一个包含电子结构指数(IES)和电子亲和指数(IEA)的描述符。在理论计算的帮助下,我们成功地确定了Fe/M部分的SRR热力学/动力学趋势。在这些发现的指导下,我们设计了一种Fe/V-NC双原子催化剂,该催化剂可以获得最小的IES和最大的IEA,从而增强了多硫化物的吸附-转化,提高了全电池性能。计算描述和实验证据之间的这种一致性突出了原子催化剂筛选和锂硫电池选择的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Unveiling Swift Heavy Ion Track Morphology in Sr-Based High-Entropy Perovskites Two-Dimensional Photothermal Nanosheets as Confined Gelation Platforms for Large-Scale, Ultrathin, and Uniform Lamellar Hydrogel Membranes Quantitative Mapping of the Lipid Nanoenvironment around Transmembrane Proteins in Living Cells Programmable Topotactic Phase Transformation of Correlated Mott Oxides toward Reconfigurable Photothermoelectric Devices Unraveling and Sliding of Polypeptide Strands Underlies the Exceptional Toughness of the Triple-Helix Collagen Molecule
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1