LoBLH6 interacts with LoMYB65 to regulate anther development through feedback regulation of gibberellin synthesis in lily

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Horticulture Research Pub Date : 2024-12-10 DOI:10.1093/hr/uhae339
Junpeng Yu, Ze Wu, Xinyue Liu, Qianqian Fang, Xue Pan, Sujuan Xu, Man He, Jinxing Lin, Nianjun Teng
{"title":"LoBLH6 interacts with LoMYB65 to regulate anther development through feedback regulation of gibberellin synthesis in lily","authors":"Junpeng Yu, Ze Wu, Xinyue Liu, Qianqian Fang, Xue Pan, Sujuan Xu, Man He, Jinxing Lin, Nianjun Teng","doi":"10.1093/hr/uhae339","DOIUrl":null,"url":null,"abstract":"The homeostasis of gibberellin (GA) is crucial for the normal development of anthers, but its underlying regulatory mechanisms are not clear. The GA induced v-Myb myeloblastosis viral oncogene homolog (MYB) transcription factor LoMYB65 is involved in anther development. In this study, we screened and identified an interacting protein of LoMYB65, Lilium Oriental Hybrids BEL1-Like Homeodomain6 (LoBLH6). LoBLH6 was localized in both the nucleus and cytoplasm, and it interacted with LoMYB65 through its BELL domain, exhibiting transcriptional repression activity. LoBLH6 was continuously expressed during anther development, with particularly high expression in the mid and late stages. In situ hybridization revealed high expression of LoBLH6 in the tapetum and microspores, with the same tissue specificity as LoMYB65. Silencing of LoBLH6 in lilies resulted in abnormal anther development, reduced pollen, and increased GA content. The application of GA induced phenotypes in the anthers and pollen of lily that were similar to the silencing of LoBLH6. Further research showed that LoBLH6 directly binds to the promoter of Lilium Oriental Hybrids GA 20-oxidase1 (LoGA20ox1) to suppress its expression, and co-expression with LoMYB65 enhances this repression. Additionally, GA treatment enhanced the interaction between LoBLH6 and LoMYB65 and their complex's inhibitory effect on downstream target genes. During the transition from microspores to mature pollen grains in lily anthers, GA levels maintain a steady state, which is disrupted by silencing LoBLH6, leading to abnormal pollen development. Overall, our results reveal that the interaction between LoBLH6 and LoMYB65 regulates anther development through feedback regulation of GA synthesis.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"154 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae339","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The homeostasis of gibberellin (GA) is crucial for the normal development of anthers, but its underlying regulatory mechanisms are not clear. The GA induced v-Myb myeloblastosis viral oncogene homolog (MYB) transcription factor LoMYB65 is involved in anther development. In this study, we screened and identified an interacting protein of LoMYB65, Lilium Oriental Hybrids BEL1-Like Homeodomain6 (LoBLH6). LoBLH6 was localized in both the nucleus and cytoplasm, and it interacted with LoMYB65 through its BELL domain, exhibiting transcriptional repression activity. LoBLH6 was continuously expressed during anther development, with particularly high expression in the mid and late stages. In situ hybridization revealed high expression of LoBLH6 in the tapetum and microspores, with the same tissue specificity as LoMYB65. Silencing of LoBLH6 in lilies resulted in abnormal anther development, reduced pollen, and increased GA content. The application of GA induced phenotypes in the anthers and pollen of lily that were similar to the silencing of LoBLH6. Further research showed that LoBLH6 directly binds to the promoter of Lilium Oriental Hybrids GA 20-oxidase1 (LoGA20ox1) to suppress its expression, and co-expression with LoMYB65 enhances this repression. Additionally, GA treatment enhanced the interaction between LoBLH6 and LoMYB65 and their complex's inhibitory effect on downstream target genes. During the transition from microspores to mature pollen grains in lily anthers, GA levels maintain a steady state, which is disrupted by silencing LoBLH6, leading to abnormal pollen development. Overall, our results reveal that the interaction between LoBLH6 and LoMYB65 regulates anther development through feedback regulation of GA synthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
期刊最新文献
Modulation of morphogenesis and metabolism by plant cell biomechanics: From model plants to traditional herbs VviWRKY24 promotes β-damascenone biosynthesis by targeting VviNCED1 to increase abscisic acid in grape berries Investigating Vesicle-Mediated Regulation of Pollen Tube Growth through BFA Inhibition and AS-ODN Targeting of TfRABA4D in Torenia fournieri Association of the tomato co-chaperone gene Sldnaj harboring a promoter deletion with susceptibility to Tomato spotted wilt virus (TSWV) PpERF17 alleviates peach fruit postharvest chilling injury under elevated CO2 by activating jasmonic acid and γ-aminobutyric acid biosynthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1