{"title":"Harnessing the power of machine learning into tissue engineering: current progress and future prospects","authors":"Yiyang Wu, Xiaotong Ding, Yiwei Wang, Defang Ouyang","doi":"10.1093/burnst/tkae053","DOIUrl":null,"url":null,"abstract":"Tissue engineering is a discipline based on cell biology and materials science with the primary goal of rebuilding and regenerating lost and damaged tissues and organs. Tissue engineering has developed rapidly in recent years, while scaffolds, growth factors, and stem cells have been successfully used for the reconstruction of various tissues and organs. However, time-consuming production, high cost, and unpredictable tissue growth still need to be addressed. Machine learning is an emerging interdisciplinary discipline that combines computer science and powerful data sets, with great potential to accelerate scientific discovery and enhance clinical practice. The convergence of machine learning and tissue engineering, while in its infancy, promises transformative progress. This paper will review the latest progress in the application of machine learning to tissue engineering, summarize the latest applications in biomaterials design, scaffold fabrication, tissue regeneration, and organ transplantation, and discuss the challenges and future prospects of interdisciplinary collaboration, with a view to providing scientific references for researchers to make greater progress in tissue engineering and machine learning.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"40 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkae053","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue engineering is a discipline based on cell biology and materials science with the primary goal of rebuilding and regenerating lost and damaged tissues and organs. Tissue engineering has developed rapidly in recent years, while scaffolds, growth factors, and stem cells have been successfully used for the reconstruction of various tissues and organs. However, time-consuming production, high cost, and unpredictable tissue growth still need to be addressed. Machine learning is an emerging interdisciplinary discipline that combines computer science and powerful data sets, with great potential to accelerate scientific discovery and enhance clinical practice. The convergence of machine learning and tissue engineering, while in its infancy, promises transformative progress. This paper will review the latest progress in the application of machine learning to tissue engineering, summarize the latest applications in biomaterials design, scaffold fabrication, tissue regeneration, and organ transplantation, and discuss the challenges and future prospects of interdisciplinary collaboration, with a view to providing scientific references for researchers to make greater progress in tissue engineering and machine learning.
期刊介绍:
The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.