Comprehensive genome annotation of the model ciliate Tetrahymena thermophila by in-depth epigenetic and transcriptomic profiling

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2024-12-10 DOI:10.1093/nar/gkae1177
Fei Ye, Xiao Chen, Yuan Li, Aili Ju, Yalan Sheng, Lili Duan, Jiachen Zhang, Zhe Zhang, Khaled A S Al-Rasheid, Naomi A Stover, Shan Gao
{"title":"Comprehensive genome annotation of the model ciliate Tetrahymena thermophila by in-depth epigenetic and transcriptomic profiling","authors":"Fei Ye, Xiao Chen, Yuan Li, Aili Ju, Yalan Sheng, Lili Duan, Jiachen Zhang, Zhe Zhang, Khaled A S Al-Rasheid, Naomi A Stover, Shan Gao","doi":"10.1093/nar/gkae1177","DOIUrl":null,"url":null,"abstract":"The ciliate Tetrahymena thermophila is a well-established unicellular model eukaryote, contributing significantly to foundational biological discoveries. Despite its acknowledged importance, current studies on Tetrahymena biology face challenges due to gene annotation inaccuracy, particularly the notable absence of untranslated regions (UTRs). To comprehensively annotate the Tetrahymena macronuclear genome, we collected extensive transcriptomic data spanning various cell stages. To ascertain transcript orientation and transcription start/end sites, we incorporated data on epigenetic marks displaying enrichment towards the 5′ end of gene bodies, including H3 lysine 4 tri-methylation (H3K4me3), histone variant H2A.Z, nucleosome positioning and N6-methyldeoxyadenine (6mA). Cap-seq data was subsequently applied to validate the accuracy of identified transcription start sites. Additionally, we integrated Nanopore direct RNA sequencing (DRS), strand-specific RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) data. Using a newly developed bioinformatic pipeline, coupled with manual curation and experimental validation, our work yielded substantial improvements to the current gene models, including the addition of 2,481 new genes, updates to 23,936 existing genes, and the incorporation of 8,339 alternatively spliced isoforms. Furthermore, novel UTR information was annotated for 26,687 high-confidence genes. Intriguingly, 20% of protein-coding genes were identified to have natural antisense transcripts characterized by high diversity in alternative splicing, thus offering insights into understanding transcriptional regulation. Our work will enhance the utility of Tetrahymena as a robust genetic toolkit for advancing biological research, and provides a promising framework for genome annotation in other eukaryotes.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"38 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1177","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ciliate Tetrahymena thermophila is a well-established unicellular model eukaryote, contributing significantly to foundational biological discoveries. Despite its acknowledged importance, current studies on Tetrahymena biology face challenges due to gene annotation inaccuracy, particularly the notable absence of untranslated regions (UTRs). To comprehensively annotate the Tetrahymena macronuclear genome, we collected extensive transcriptomic data spanning various cell stages. To ascertain transcript orientation and transcription start/end sites, we incorporated data on epigenetic marks displaying enrichment towards the 5′ end of gene bodies, including H3 lysine 4 tri-methylation (H3K4me3), histone variant H2A.Z, nucleosome positioning and N6-methyldeoxyadenine (6mA). Cap-seq data was subsequently applied to validate the accuracy of identified transcription start sites. Additionally, we integrated Nanopore direct RNA sequencing (DRS), strand-specific RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) data. Using a newly developed bioinformatic pipeline, coupled with manual curation and experimental validation, our work yielded substantial improvements to the current gene models, including the addition of 2,481 new genes, updates to 23,936 existing genes, and the incorporation of 8,339 alternatively spliced isoforms. Furthermore, novel UTR information was annotated for 26,687 high-confidence genes. Intriguingly, 20% of protein-coding genes were identified to have natural antisense transcripts characterized by high diversity in alternative splicing, thus offering insights into understanding transcriptional regulation. Our work will enhance the utility of Tetrahymena as a robust genetic toolkit for advancing biological research, and provides a promising framework for genome annotation in other eukaryotes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
Defining gene ends: RNA polymerase II CTD threonine 4 phosphorylation marks transcription termination regions genome-wide SP140 represses specific loci by recruiting polycomb repressive complex 2 and NuRD complex A subcellular selective APEX2-based proximity labeling used for identifying mitochondrial G-quadruplex DNA binding proteins Centromeric localization of αKNL2 and CENP-C proteins in plants depends on their centromere-targeting domain and DNA-binding regions Correction to 'The Pfam protein families database: embracing AI/ML'.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1