Backbone resonance assignments of the C-terminal thioesterase domain of tyrocidine synthetase C.

IF 0.8 4区 生物学 Q4 BIOPHYSICS Biomolecular NMR Assignments Pub Date : 2024-12-11 DOI:10.1007/s12104-024-10210-5
Mitsuhiro Takeda, Rino Saito, Sho Konno, Takayuki Nagae, Hiroshi Aoyama, Sosuke Yoshinaga, Hiroaki Terasawa, Akihiro Taguchi, Atsuhiko Taniguchi, Yoshio Hayashi, Masaki Mishima
{"title":"Backbone resonance assignments of the C-terminal thioesterase domain of tyrocidine synthetase C.","authors":"Mitsuhiro Takeda, Rino Saito, Sho Konno, Takayuki Nagae, Hiroshi Aoyama, Sosuke Yoshinaga, Hiroaki Terasawa, Akihiro Taguchi, Atsuhiko Taniguchi, Yoshio Hayashi, Masaki Mishima","doi":"10.1007/s12104-024-10210-5","DOIUrl":null,"url":null,"abstract":"<p><p>Natural macrocyclic peptides produced by microorganisms serve as valuable resources for therapeutic compounds, including antibiotics, anticancer agents, and immune suppressive agents. Nonribosomal peptide synthetases (NRPSs) are responsible for the biosynthesis of macrocyclic peptides. NRPSs are large multimodular enzymes, and each module recognizes and incorporates one specific amino acid into the polypeptide product. In the final biosynthetic step, the mature linear peptide precursor is subject to head-to-tail cyclization by the thioesterase (TE) domain in the C-terminal module. Since the TE domains can autonomously catalyze the cyclization of diverse linear peptide substrates, isolated TE domains can be used to produce natural product derivatives. To understand the mechanism of TE domains in NRPSs as a base for therapeutic applications, we investigated the TE domain (residues 6236-6486) of tyrocidine synthetase TycC by NMR. Tyrocidine is a cyclic decapeptide with antibiotic activity, and TycC-TE catalyzes the cyclization of the linear decapeptide precursor. Here, we report the backbone resonance assignments of TycC-TE. The assignments of TycC-TE provide the basis for NMR investigations of the structure and substrate-recognition mode of the TE domain in NRPS.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12104-024-10210-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Natural macrocyclic peptides produced by microorganisms serve as valuable resources for therapeutic compounds, including antibiotics, anticancer agents, and immune suppressive agents. Nonribosomal peptide synthetases (NRPSs) are responsible for the biosynthesis of macrocyclic peptides. NRPSs are large multimodular enzymes, and each module recognizes and incorporates one specific amino acid into the polypeptide product. In the final biosynthetic step, the mature linear peptide precursor is subject to head-to-tail cyclization by the thioesterase (TE) domain in the C-terminal module. Since the TE domains can autonomously catalyze the cyclization of diverse linear peptide substrates, isolated TE domains can be used to produce natural product derivatives. To understand the mechanism of TE domains in NRPSs as a base for therapeutic applications, we investigated the TE domain (residues 6236-6486) of tyrocidine synthetase TycC by NMR. Tyrocidine is a cyclic decapeptide with antibiotic activity, and TycC-TE catalyzes the cyclization of the linear decapeptide precursor. Here, we report the backbone resonance assignments of TycC-TE. The assignments of TycC-TE provide the basis for NMR investigations of the structure and substrate-recognition mode of the TE domain in NRPS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
期刊最新文献
NMR resonance assignment of a ligand-binding domain of ephrin receptor A2. Backbone resonance assignments of the C-terminal thioesterase domain of tyrocidine synthetase C. 1H, 13C, and 15N resonance assignments of the amyloidogenic peptide SEM2(49-107) by NMR spectroscopy. 1H, 15N and 13C backbone resonance assignment of the N-terminal region of Zika virus NS4B protein in detergent micelles. Backbone 1H, 15N, and 13C resonance assignments of the FF1 domain from P190A RhoGAP in 5 and 8 M urea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1