{"title":"Arginine vasopressin (AVP) treatment increases the expression of inhibitory immune checkpoint molecules in monocyte-derived dendritic cells.","authors":"Zahra Ghahramanipour, Bahar Naseri, Amirhossein Mardi, Sepideh Sohrabi, Javad Masoumi, Elham Baghbani, Hadi Karimzadeh, Behzad Baradaran","doi":"10.1007/s12026-024-09579-1","DOIUrl":null,"url":null,"abstract":"<p><p>Arginine vasopressin (AVP) has disparate impacts on immune responses by divergent receptors on cells including DCs. This study was conducted with the aim of investigating the impact of AVP on the maturation and expression of the inhibitory immune checkpoint molecules in tolerogenic monocyte-derived DCs. CD14 marker was used to separate monocytes from peripheral blood mononuclear cells (PBMCs) by MACS method. To differentiate monocytes from DCs, we utilized GM-CSF and IL-4 cytokines. Tolerogenic DCs were generated using vitamin D3 and dexamethasone. We added LPS and AVP to the culture medium on day 6 after incubation of DCs at 37 °C. Finally, we assessed the surface molecules by flow cytometry and used real-time PCR to evaluate the expression of genes related to the inhibitory immune checkpoints. Based on the obtained data, AVP increased the expression of CD11c (P ≤ 0.0001), HLA-DR (P ≤ 0.01), and CD86 (P ≤ 0.01) in AVP-mDCs. Also, the expression of all the immune checkpoint genes including CTLA-4 (P ≤ 0.001), BTLA (P ≤ 0.001), PDL-1 (P ≤ 0.05), B7H7 (P ≤ 0.001), LAG3 (P ≤ 0.01), and VISTA (P ≤ 0.001) in AVP-mDCs was increased in comparison to the control group. Vasopressin caused the generation of mature and tolerogenic DCs. Our data may help to consider AVP-mDCs to take part in autoimmune disease therapy, transplanted tissue rejection impedance, and allergies.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":"73 1","pages":"6"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunologic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-024-09579-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Arginine vasopressin (AVP) has disparate impacts on immune responses by divergent receptors on cells including DCs. This study was conducted with the aim of investigating the impact of AVP on the maturation and expression of the inhibitory immune checkpoint molecules in tolerogenic monocyte-derived DCs. CD14 marker was used to separate monocytes from peripheral blood mononuclear cells (PBMCs) by MACS method. To differentiate monocytes from DCs, we utilized GM-CSF and IL-4 cytokines. Tolerogenic DCs were generated using vitamin D3 and dexamethasone. We added LPS and AVP to the culture medium on day 6 after incubation of DCs at 37 °C. Finally, we assessed the surface molecules by flow cytometry and used real-time PCR to evaluate the expression of genes related to the inhibitory immune checkpoints. Based on the obtained data, AVP increased the expression of CD11c (P ≤ 0.0001), HLA-DR (P ≤ 0.01), and CD86 (P ≤ 0.01) in AVP-mDCs. Also, the expression of all the immune checkpoint genes including CTLA-4 (P ≤ 0.001), BTLA (P ≤ 0.001), PDL-1 (P ≤ 0.05), B7H7 (P ≤ 0.001), LAG3 (P ≤ 0.01), and VISTA (P ≤ 0.001) in AVP-mDCs was increased in comparison to the control group. Vasopressin caused the generation of mature and tolerogenic DCs. Our data may help to consider AVP-mDCs to take part in autoimmune disease therapy, transplanted tissue rejection impedance, and allergies.
期刊介绍:
IMMUNOLOGIC RESEARCH represents a unique medium for the presentation, interpretation, and clarification of complex scientific data. Information is presented in the form of interpretive synthesis reviews, original research articles, symposia, editorials, and theoretical essays. The scope of coverage extends to cellular immunology, immunogenetics, molecular and structural immunology, immunoregulation and autoimmunity, immunopathology, tumor immunology, host defense and microbial immunity, including viral immunology, immunohematology, mucosal immunity, complement, transplantation immunology, clinical immunology, neuroimmunology, immunoendocrinology, immunotoxicology, translational immunology, and history of immunology.