Lithospermic acid targeting heat shock protein 90 attenuates LPS-induced inflammatory response via NF-кB signalling pathway in BV2 microglial cells.

IF 3.3 4区 医学 Q3 IMMUNOLOGY Immunologic Research Pub Date : 2025-02-19 DOI:10.1007/s12026-025-09600-1
Jie Guo, Chen-Guang Li, Feng-Yi Mai, Jing-Rong Liang, Ze-Hao Chen, Jiao Luo, Ming-Chao Zhou, Yu-Long Wang, Wen-Tao Yang
{"title":"Lithospermic acid targeting heat shock protein 90 attenuates LPS-induced inflammatory response via NF-кB signalling pathway in BV2 microglial cells.","authors":"Jie Guo, Chen-Guang Li, Feng-Yi Mai, Jing-Rong Liang, Ze-Hao Chen, Jiao Luo, Ming-Chao Zhou, Yu-Long Wang, Wen-Tao Yang","doi":"10.1007/s12026-025-09600-1","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia function as a vital constituent in the maintenance of brain homeostasis. Aberrant microglial activation, however, may contribute to neurodegenerative diseases. Lithospermic acid (LA) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza. The present study investigated the potential effects of lithospermic acid on LPS-induced neuroinflammation in BV2 microglial cells and determined the mechanism of action of this compound. Cells were pre-treated with lithospermic acid for 1 h and incubated with LPS for 24 h. qPCR, immunofluorescence, and immunoblot assays were used to determine the expression of iNOS, COX2, NF-κB p65, and HSP90 expression. ELISA was employed to measure the production of pro-inflammatory cytokines. Lithospermic acid dramatically reduced LPS-stimulated cell migration and decreased NF-κB p65 nuclear translocation. Furthermore, lithospermic acid also markedly decreased the production of pro-inflammatory cytokines, including IL-6, IL-1β, and TNF-α in a dose-dependent manner. Additionally, lithospermic acid inhibited NO and PGE2 production in response to LPS, and it also inhibited the expression of iNOS and COX2 in a dose-dependent manner. Molecular docking and experimental verification have demonstrated that lithospermic acid inhibits the activity and expression of HSP90. Small interfering RNA knockdown of HSP90 expression, which abrogated LPS-induced inflammation. These findings suggest that the lithospermic acid targeting HSP90 attenuates LPS-induced inflammatory response via the NF-κB signalling pathway in BV2 microglial cells. Collectively, lithospermic acid may offer therapeutic benefits for neurodegenerative disorders associated with microglial activation and could serve as a potential inhibitor/agent for the treatment of neuroinflammation.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":"73 1","pages":"54"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunologic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-025-09600-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microglia function as a vital constituent in the maintenance of brain homeostasis. Aberrant microglial activation, however, may contribute to neurodegenerative diseases. Lithospermic acid (LA) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza. The present study investigated the potential effects of lithospermic acid on LPS-induced neuroinflammation in BV2 microglial cells and determined the mechanism of action of this compound. Cells were pre-treated with lithospermic acid for 1 h and incubated with LPS for 24 h. qPCR, immunofluorescence, and immunoblot assays were used to determine the expression of iNOS, COX2, NF-κB p65, and HSP90 expression. ELISA was employed to measure the production of pro-inflammatory cytokines. Lithospermic acid dramatically reduced LPS-stimulated cell migration and decreased NF-κB p65 nuclear translocation. Furthermore, lithospermic acid also markedly decreased the production of pro-inflammatory cytokines, including IL-6, IL-1β, and TNF-α in a dose-dependent manner. Additionally, lithospermic acid inhibited NO and PGE2 production in response to LPS, and it also inhibited the expression of iNOS and COX2 in a dose-dependent manner. Molecular docking and experimental verification have demonstrated that lithospermic acid inhibits the activity and expression of HSP90. Small interfering RNA knockdown of HSP90 expression, which abrogated LPS-induced inflammation. These findings suggest that the lithospermic acid targeting HSP90 attenuates LPS-induced inflammatory response via the NF-κB signalling pathway in BV2 microglial cells. Collectively, lithospermic acid may offer therapeutic benefits for neurodegenerative disorders associated with microglial activation and could serve as a potential inhibitor/agent for the treatment of neuroinflammation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunologic Research
Immunologic Research 医学-免疫学
CiteScore
6.90
自引率
0.00%
发文量
83
审稿时长
6-12 weeks
期刊介绍: IMMUNOLOGIC RESEARCH represents a unique medium for the presentation, interpretation, and clarification of complex scientific data. Information is presented in the form of interpretive synthesis reviews, original research articles, symposia, editorials, and theoretical essays. The scope of coverage extends to cellular immunology, immunogenetics, molecular and structural immunology, immunoregulation and autoimmunity, immunopathology, tumor immunology, host defense and microbial immunity, including viral immunology, immunohematology, mucosal immunity, complement, transplantation immunology, clinical immunology, neuroimmunology, immunoendocrinology, immunotoxicology, translational immunology, and history of immunology.
期刊最新文献
A case of atypical infantile de novo antiphospholipid syndrome presenting with neonatal ischemic stroke without any triggering risk factors as a "second hit" and review of the literature. Lithospermic acid targeting heat shock protein 90 attenuates LPS-induced inflammatory response via NF-кB signalling pathway in BV2 microglial cells. Risk factors for predicting medium-giant coronary artery aneurysms in Kawasaki disease. PANoptosis-related genes in the prognosis and immune landscape of hepatocellular carcinoma. Immunization with recombinant HPV16-E7d in fusion with Flagellin as a cancer vaccine: Effect of antigen-adjuvant orientation on the immune response pattern.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1