Comparison of the mechanisms of DNA damage following photoexcitation and chemiexcitation

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of photochemistry and photobiology. B, Biology Pub Date : 2025-01-01 DOI:10.1016/j.jphotobiol.2024.113070
Andreia Boaro , Luiz Duarte Ramos , Erick Leite Bastos , Etelvino José Henriques Bechara , Fernando Heering Bartoloni
{"title":"Comparison of the mechanisms of DNA damage following photoexcitation and chemiexcitation","authors":"Andreia Boaro ,&nbsp;Luiz Duarte Ramos ,&nbsp;Erick Leite Bastos ,&nbsp;Etelvino José Henriques Bechara ,&nbsp;Fernando Heering Bartoloni","doi":"10.1016/j.jphotobiol.2024.113070","DOIUrl":null,"url":null,"abstract":"<div><div>In this review, we compare the mechanisms and consequences of electronic excitation of DNA via photon absorption or photosensitization, as well as by chemically induced generation of excited states. The absorption of UV radiation by DNA is known to produce cyclobutane pyrimidine dimers (CPDs) and thymine pyrimidone photoproducts. Photosensitizers are known to enable such transformations using UV-A and visible light by generating triplet species able to transfer energy to DNA. Conversely, chemiexcitation of DNA is a process related to the formation of high energy peroxides whose decomposition leads to triplet excited species. In practice, both photoexcitation and chemiexcitation produce reactive excited species able to promote some DNA nucleobases to their excited state. We discuss the effect of epigenetic methylation modifications of DNA and the role of endogenous and exogenous photosensitizers on the formation of DNA photoproducts via triplet-triplet energy transfer as well as oxidative DNA damages. The mechanisms of pathogenic pathway involving the generation of CPDs via chemiexcitation (namely dark CPDs, dCPDs) are discussed and compared with photoexcitation considering their spatiotemporal characteristics. Recognition of the multifaceted noxious effects of UV radiation opens new horizons for the development of effective electronically excited quenchers, thereby providing a crucial step toward mitigating DNA photodamage.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"262 ","pages":"Article 113070"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134424002306","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this review, we compare the mechanisms and consequences of electronic excitation of DNA via photon absorption or photosensitization, as well as by chemically induced generation of excited states. The absorption of UV radiation by DNA is known to produce cyclobutane pyrimidine dimers (CPDs) and thymine pyrimidone photoproducts. Photosensitizers are known to enable such transformations using UV-A and visible light by generating triplet species able to transfer energy to DNA. Conversely, chemiexcitation of DNA is a process related to the formation of high energy peroxides whose decomposition leads to triplet excited species. In practice, both photoexcitation and chemiexcitation produce reactive excited species able to promote some DNA nucleobases to their excited state. We discuss the effect of epigenetic methylation modifications of DNA and the role of endogenous and exogenous photosensitizers on the formation of DNA photoproducts via triplet-triplet energy transfer as well as oxidative DNA damages. The mechanisms of pathogenic pathway involving the generation of CPDs via chemiexcitation (namely dark CPDs, dCPDs) are discussed and compared with photoexcitation considering their spatiotemporal characteristics. Recognition of the multifaceted noxious effects of UV radiation opens new horizons for the development of effective electronically excited quenchers, thereby providing a crucial step toward mitigating DNA photodamage.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光激发与化学激发后DNA损伤机制的比较。
在这篇综述中,我们比较了DNA通过光子吸收或光敏以及化学诱导产生激发态的电子激发的机制和后果。已知DNA对紫外线辐射的吸收产生环丁烷嘧啶二聚体(CPDs)和胸腺嘧啶光产物。众所周知,光敏剂通过产生能够将能量传递给DNA的三重态物质,可以利用UV-A和可见光实现这种转化。相反,DNA的化学激发是一个与高能过氧化物的形成有关的过程,其分解导致三重态激发态。在实践中,光激发和化学激发都会产生反应性激发态,能够促进一些DNA核碱基进入它们的激发态。我们讨论了表观遗传甲基化修饰对DNA的影响,以及内源性和外源性光敏剂对DNA光产物形成的作用,这些光产物通过三联体-三联体能量转移以及DNA氧化损伤。讨论了通过化学激发(即暗CPDs, dCPDs)产生CPDs的致病途径的机制,并考虑了它们的时空特征,将其与光激发进行了比较。认识到紫外线辐射的多方面有害影响,为开发有效的电子激发猝灭剂开辟了新的视野,从而为减轻DNA光损伤迈出了关键的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
1.90%
发文量
161
审稿时长
37 days
期刊介绍: The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field. The scope includes: - Bioluminescence - Chronobiology - DNA repair - Environmental photobiology - Nanotechnology in photobiology - Photocarcinogenesis - Photochemistry of biomolecules - Photodynamic therapy - Photomedicine - Photomorphogenesis - Photomovement - Photoreception - Photosensitization - Photosynthesis - Phototechnology - Spectroscopy of biological systems - UV and visible radiation effects and vision.
期刊最新文献
Vicenin-2 reduces inflammation and apoptosis to relieve skin photoaging via suppressing GSK3β Microstructural regulation of Ir(III) complexes for enhanced photocytotoxicity in photodynamic cancer therapy Editorial Board Comparative investigation of structural properties and biological applications of chemical and biogenic synthesis of zirconium dioxide (ZrO2) nanoparticles using Passiflora edulis Photodynamic antimicrobial therapy with Erythrosin B, Eosin Y, and Rose Bengal for the inhibition of fungal keratitis isolates: An in vitro study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1