Juan Ramón Tejedor, Alejandro Soriano-Sexto, Leonardo Beccari, Natalia Castejón-Fernández, Patricia Correcher, Lidia Sainz-Ledo, Juan José Alba-Linares, Rocío G. Urdinguio, Magdalena Ugarte, Agustín F. Fernández, Pilar Rodríguez-Pombo, Mario F. Fraga, Belén Pérez
{"title":"Integration of multi-omics layers empowers precision diagnosis through unveiling pathogenic mechanisms on maple syrup urine disease","authors":"Juan Ramón Tejedor, Alejandro Soriano-Sexto, Leonardo Beccari, Natalia Castejón-Fernández, Patricia Correcher, Lidia Sainz-Ledo, Juan José Alba-Linares, Rocío G. Urdinguio, Magdalena Ugarte, Agustín F. Fernández, Pilar Rodríguez-Pombo, Mario F. Fraga, Belén Pérez","doi":"10.1002/jimd.12829","DOIUrl":null,"url":null,"abstract":"<p>Maple syrup urine disease (MSUD) is a rare inherited metabolic disorder characterized by deficient activity of the branched-chain alpha-ketoacid dehydrogenase (BCKDH) complex, required to metabolize the amino acids leucine, isoleucine, and valine. Despite its profound metabolic implications, the molecular alterations underlying this metabolic impairment had not yet been completely elucidated. We performed a comprehensive multi-omics integration analysis, including genomic, epigenomic, and transcriptomic data from fibroblasts derived from a cohort of MSUD patients and unaffected controls to genetically characterize an MSUD case and to unravel the MSUD pathophysiology. MSUD patients exhibit a defined episignature that reshapes the global DNA methylation landscape, resulting in the stimulation of HOX cluster genes and the restriction of cell cycle gene-related signatures. Subsequent data integration revealed the impact of AP1-related and CEBPB transcription factors on the observed molecular reorganization, with MEIS1 emerging as a potential downstream candidate affected by robust epigenetic repression in MSUD patients. Furthermore, the integration of multi-omics layers facilitated the identification of a strong epigenetic repression in the <i>DBT</i> promoter in a patient wherein no BCKDH pathogenic variants had been detected. A Circular Chromatin Conformation Capture assay indicated a disturbance of the interactions of <i>DBT</i> promoter, thereby unveiling alternative modes of disease inheritance. Integration of multi-omics data unveiled underlying molecular networks rewired in MSUD patients and represents a powerful approach with diagnostic potential for rare genetic disorders with unknown genetic bases.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":"48 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inherited Metabolic Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jimd.12829","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Maple syrup urine disease (MSUD) is a rare inherited metabolic disorder characterized by deficient activity of the branched-chain alpha-ketoacid dehydrogenase (BCKDH) complex, required to metabolize the amino acids leucine, isoleucine, and valine. Despite its profound metabolic implications, the molecular alterations underlying this metabolic impairment had not yet been completely elucidated. We performed a comprehensive multi-omics integration analysis, including genomic, epigenomic, and transcriptomic data from fibroblasts derived from a cohort of MSUD patients and unaffected controls to genetically characterize an MSUD case and to unravel the MSUD pathophysiology. MSUD patients exhibit a defined episignature that reshapes the global DNA methylation landscape, resulting in the stimulation of HOX cluster genes and the restriction of cell cycle gene-related signatures. Subsequent data integration revealed the impact of AP1-related and CEBPB transcription factors on the observed molecular reorganization, with MEIS1 emerging as a potential downstream candidate affected by robust epigenetic repression in MSUD patients. Furthermore, the integration of multi-omics layers facilitated the identification of a strong epigenetic repression in the DBT promoter in a patient wherein no BCKDH pathogenic variants had been detected. A Circular Chromatin Conformation Capture assay indicated a disturbance of the interactions of DBT promoter, thereby unveiling alternative modes of disease inheritance. Integration of multi-omics data unveiled underlying molecular networks rewired in MSUD patients and represents a powerful approach with diagnostic potential for rare genetic disorders with unknown genetic bases.
期刊介绍:
The Journal of Inherited Metabolic Disease (JIMD) is the official journal of the Society for the Study of Inborn Errors of Metabolism (SSIEM). By enhancing communication between workers in the field throughout the world, the JIMD aims to improve the management and understanding of inherited metabolic disorders. It publishes results of original research and new or important observations pertaining to any aspect of inherited metabolic disease in humans and higher animals. This includes clinical (medical, dental and veterinary), biochemical, genetic (including cytogenetic, molecular and population genetic), experimental (including cell biological), methodological, theoretical, epidemiological, ethical and counselling aspects. The JIMD also reviews important new developments or controversial issues relating to metabolic disorders and publishes reviews and short reports arising from the Society''s annual symposia. A distinction is made between peer-reviewed scientific material that is selected because of its significance for other professionals in the field and non-peer- reviewed material that aims to be important, controversial, interesting or entertaining (“Extras”).