Artificial intelligence powers regenerative medicine into predictive realm.

IF 2.4 4区 医学 Q4 CELL & TISSUE ENGINEERING Regenerative medicine Pub Date : 2024-12-11 DOI:10.1080/17460751.2024.2437281
Armin Garmany, Andre Terzic
{"title":"Artificial intelligence powers regenerative medicine into predictive realm.","authors":"Armin Garmany, Andre Terzic","doi":"10.1080/17460751.2024.2437281","DOIUrl":null,"url":null,"abstract":"<p><p>The expanding regenerative medicine toolkit is reaching a record number of lives. There is a pressing need to enhance the precision, efficiency, and effectiveness of regenerative approaches and achieve reliable outcomes. While regenerative medicine has relied on an empiric paradigm, availability of big data along with advances in informatics and artificial intelligence offer the opportunity to inform the next generation of regenerative sciences along the discovery, translation, and application pathway. Artificial intelligence can streamline discovery and development of optimized biotherapeutics by aiding in the interpretation of readouts associated with optimal repair outcomes. In advanced biomanufacturing, artificial intelligence holds potential in ensuring quality control and assuring scalability through automated monitoring of process-critical variables mandatory for product consistency. In practice application, artificial intelligence can guide clinical trial design, patient selection, delivery strategies, and outcome assessment. As artificial intelligence transforms the regenerative horizon, caution is necessary to reduce bias, ensure generalizability, and mitigate ethical concerns with the goal of equitable access for patients and populations.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"1-6"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17460751.2024.2437281","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The expanding regenerative medicine toolkit is reaching a record number of lives. There is a pressing need to enhance the precision, efficiency, and effectiveness of regenerative approaches and achieve reliable outcomes. While regenerative medicine has relied on an empiric paradigm, availability of big data along with advances in informatics and artificial intelligence offer the opportunity to inform the next generation of regenerative sciences along the discovery, translation, and application pathway. Artificial intelligence can streamline discovery and development of optimized biotherapeutics by aiding in the interpretation of readouts associated with optimal repair outcomes. In advanced biomanufacturing, artificial intelligence holds potential in ensuring quality control and assuring scalability through automated monitoring of process-critical variables mandatory for product consistency. In practice application, artificial intelligence can guide clinical trial design, patient selection, delivery strategies, and outcome assessment. As artificial intelligence transforms the regenerative horizon, caution is necessary to reduce bias, ensure generalizability, and mitigate ethical concerns with the goal of equitable access for patients and populations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Regenerative medicine
Regenerative medicine 医学-工程:生物医学
CiteScore
4.20
自引率
3.70%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization. Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community. Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.
期刊最新文献
Allogeneic bone marrow derived clonal mesenchymal stromal cells in refractory rheumatoid arthritis: a pilot study. Challenges in the processing and preservation of adipose-derived stem cell subpopulations for clinical use. Risk-based pricing models and the role they might play in patients' access to new stem cell therapies. Extracellular vesicles as standard-of-care therapy: will fast-tracking the regulatory processes help achieve the goal? Artificial intelligence powers regenerative medicine into predictive realm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1