{"title":"Clinical workload profile of medical physics professionals at particle therapy Centers: a National Survey in Japan.","authors":"Seiichi Ota, Keisuke Yasui, Toshiyuki Ogata, Yutaro Mori, Teiji Nishio, Naoki Tohyama, Hiroyuki Okamoto, Masahiko Kurooka, Kohei Shimomura, Toru Kojima, Hiroshi Onishi","doi":"10.1093/jrr/rrae092","DOIUrl":null,"url":null,"abstract":"<p><p>The current research on staffing models is primarily focused on conventional external photon beam therapy, which predominantly involves using linear accelerators. This emphasizes the need for comprehensive studies to understand better and define specific particle therapy facilities' staffing requirements. In a 2022 survey of 25 particle therapy facilities in Japan with an 84% response rate, significant insights were obtained regarding workload distribution, defined as the product of personnel count and task time (person-minutes), for patient-related tasks and equipment quality assurance and quality control (QA/QC). The survey revealed that machinery QA/QC tasks were particularly demanding, with an average monthly workload of 376.9 min and weekly tasks averaging 162.1 min. In comparison, patient-related workloads focused on treatment planning, exhibiting substantial time commitments, particularly for scanning and passive scattering techniques. The average workloads for treatment planning per patient were 291.3 and 195.4 min, respectively. In addition, specific patient scenarios such as pre-treatment sedation in pediatric cases require longer durations (averaging 84.5 min), which likely include the workloads of not only the physician responsible for sedation but also the radiotherapy technology and medical physics specialists providing support during sedation and the nursing staff involved in sedation care. These findings underscore the significant time investments required for machinery QA/QC and patient-specific treatment planning in particle therapy facilities, along with the need for specialized care procedures in pediatric cases. The results of this survey also emphasized the challenges and staffing requirements to ensure QA/QC in high-precision medical environments.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"52-64"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753842/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jrr/rrae092","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The current research on staffing models is primarily focused on conventional external photon beam therapy, which predominantly involves using linear accelerators. This emphasizes the need for comprehensive studies to understand better and define specific particle therapy facilities' staffing requirements. In a 2022 survey of 25 particle therapy facilities in Japan with an 84% response rate, significant insights were obtained regarding workload distribution, defined as the product of personnel count and task time (person-minutes), for patient-related tasks and equipment quality assurance and quality control (QA/QC). The survey revealed that machinery QA/QC tasks were particularly demanding, with an average monthly workload of 376.9 min and weekly tasks averaging 162.1 min. In comparison, patient-related workloads focused on treatment planning, exhibiting substantial time commitments, particularly for scanning and passive scattering techniques. The average workloads for treatment planning per patient were 291.3 and 195.4 min, respectively. In addition, specific patient scenarios such as pre-treatment sedation in pediatric cases require longer durations (averaging 84.5 min), which likely include the workloads of not only the physician responsible for sedation but also the radiotherapy technology and medical physics specialists providing support during sedation and the nursing staff involved in sedation care. These findings underscore the significant time investments required for machinery QA/QC and patient-specific treatment planning in particle therapy facilities, along with the need for specialized care procedures in pediatric cases. The results of this survey also emphasized the challenges and staffing requirements to ensure QA/QC in high-precision medical environments.
期刊介绍:
The Journal of Radiation Research (JRR) is an official journal of The Japanese Radiation Research Society (JRRS), and the Japanese Society for Radiation Oncology (JASTRO).
Since its launch in 1960 as the official journal of the JRRS, the journal has published scientific articles in radiation science in biology, chemistry, physics, epidemiology, and environmental sciences. JRR broadened its scope to include oncology in 2009, when JASTRO partnered with the JRRS to publish the journal.
Articles considered fall into two broad categories:
Oncology & Medicine - including all aspects of research with patients that impacts on the treatment of cancer using radiation. Papers which cover related radiation therapies, radiation dosimetry, and those describing the basis for treatment methods including techniques, are also welcomed. Clinical case reports are not acceptable.
Radiation Research - basic science studies of radiation effects on livings in the area of physics, chemistry, biology, epidemiology and environmental sciences.
Please be advised that JRR does not accept any papers of pure physics or chemistry.
The journal is bimonthly, and is edited and published by the JRR Editorial Committee.