Vinicius P Garcia, Kelly A Stockelman, Ma'ayan V Levy, Hannah K Fandl, Anabel Goulding, Jamie G Hijmans, Samuel T Ruzzene, Auburn R Berry, Jared J Greiner, Christopher A DeSouza
{"title":"Microvesicles Derived from Nitric Oxide Synthase-Inhibited Endothelial Cells Promote Cell Dysfunction.","authors":"Vinicius P Garcia, Kelly A Stockelman, Ma'ayan V Levy, Hannah K Fandl, Anabel Goulding, Jamie G Hijmans, Samuel T Ruzzene, Auburn R Berry, Jared J Greiner, Christopher A DeSouza","doi":"10.1159/000542280","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The aims of this study were to determine (1) whether endothelial nitric oxide synthase (eNOS) inhibition stimulates endothelial microvesicles (EMVs) release and (2) the effect of EMVs derived from eNOS-inhibited cells on endothelial cell eNOS, inflammation, apoptosis, and tissue-type plasminogen activator (t-PA).</p><p><strong>Methods: </strong>Human umbilical vein endothelial cells (HUVECs) were treated with the eNOS inhibitor (NG-nitro-<sc>l</sc>-arginine methyl ester [L-NAME], 300 µ<sc>M</sc>) for 24 h. EMVs from untreated and L-NAME-treated cells were isolated, quantified, and exposed to HUVECs for 24 h.</p><p><strong>Results: </strong>eNOS-inhibited cells released significantly higher EMVs than untreated cells (81 ± 13 vs. 41 ± 15 EMV/μL; p = 0.005). Expression of total eNOS (97.1 ± 16.4 vs. 157.5 ± 31.2 arbitrary units [AUs]; p = 0.01), p-eNOS (4.9 ± 1.2 vs. 9.1 ± 12.6 AUs; p = 0.02), and NO production (5.0 ± 0.8 vs. 7.0 ± 1.3 µmol/L; p = 0.04) were significantly lower in cells treated with EMVs from L-NAME-treated cells. L-NAME-derived EMVs induced significantly higher IL-6 (38.3 ± 10.3 vs. 21.0 ± 3.8 pg/mL; p = 0.01) and IL-8 (38.9 ± 7.0 vs. 27.2 ± 6.2 pg/mL; p = 0.04) production concurrent with higher expression of p-NF-κB p65 (Ser536) (9.7 ± 1.6 vs. 6.1 ± 1.2 AUs; p = 0.01). Expression of activated caspase-3 was higher (9.5 ± 1.1 vs. 6.4 ± 0.4 AUs) and t-PA lower (24.2 ± 4.3 vs. 36.2 ± 8.4 AUs; p = 0.04) in cells treated with L-NAME-derived EMVs.</p><p><strong>Conclusion: </strong>eNOS inhibition induces an increase in EMV release and an EMV phenotype with adverse cellular effects.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":"1-12"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000542280","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The aims of this study were to determine (1) whether endothelial nitric oxide synthase (eNOS) inhibition stimulates endothelial microvesicles (EMVs) release and (2) the effect of EMVs derived from eNOS-inhibited cells on endothelial cell eNOS, inflammation, apoptosis, and tissue-type plasminogen activator (t-PA).
Methods: Human umbilical vein endothelial cells (HUVECs) were treated with the eNOS inhibitor (NG-nitro-l-arginine methyl ester [L-NAME], 300 µM) for 24 h. EMVs from untreated and L-NAME-treated cells were isolated, quantified, and exposed to HUVECs for 24 h.
Results: eNOS-inhibited cells released significantly higher EMVs than untreated cells (81 ± 13 vs. 41 ± 15 EMV/μL; p = 0.005). Expression of total eNOS (97.1 ± 16.4 vs. 157.5 ± 31.2 arbitrary units [AUs]; p = 0.01), p-eNOS (4.9 ± 1.2 vs. 9.1 ± 12.6 AUs; p = 0.02), and NO production (5.0 ± 0.8 vs. 7.0 ± 1.3 µmol/L; p = 0.04) were significantly lower in cells treated with EMVs from L-NAME-treated cells. L-NAME-derived EMVs induced significantly higher IL-6 (38.3 ± 10.3 vs. 21.0 ± 3.8 pg/mL; p = 0.01) and IL-8 (38.9 ± 7.0 vs. 27.2 ± 6.2 pg/mL; p = 0.04) production concurrent with higher expression of p-NF-κB p65 (Ser536) (9.7 ± 1.6 vs. 6.1 ± 1.2 AUs; p = 0.01). Expression of activated caspase-3 was higher (9.5 ± 1.1 vs. 6.4 ± 0.4 AUs) and t-PA lower (24.2 ± 4.3 vs. 36.2 ± 8.4 AUs; p = 0.04) in cells treated with L-NAME-derived EMVs.
Conclusion: eNOS inhibition induces an increase in EMV release and an EMV phenotype with adverse cellular effects.
期刊介绍:
The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.