Quantitative radiography for determining density fluctuations in HED experiments.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2024-12-01 DOI:10.1063/5.0215362
E C Merritt, F W Doss, J M Levesque, A M Rasmus, T Desjardins, C A Di Stefano, K A Flippo, D W Schmidt
{"title":"Quantitative radiography for determining density fluctuations in HED experiments.","authors":"E C Merritt, F W Doss, J M Levesque, A M Rasmus, T Desjardins, C A Di Stefano, K A Flippo, D W Schmidt","doi":"10.1063/5.0215362","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed a method to extract density fluctuation measurements from x-ray radiographs of high-energy density (HED) instability growth and turbulence experiments. We use this information to calculate density fluctuation statistics for constraining the performance of turbulent mix models in HED systems. The density calculation combines image filtering, removal of systemic effects such as backlighter variation, calculation of transmission across multiple materials, and use of tracer materials to generate an approximate single-material density field. From the density map, we calculate both average density and a variance-like moment b (density-specific-volume covariance), which we compare to our models. We infer both quantities from a single image, which is significantly more information than the historic single scalar mix width measurements. We also develop a method of analyzing simulation outputs that incorporate both the density fluctuation metric from a turbulence model and the bulk material maps from the hydrodynamic code. This analysis helps address the question of how to initialize the simulations for best comparison to data from systems with large separations of scale in the mixing perturbation initial condition. We find that our data analysis method yields 1D average density and b curves with similar morphology and amplitudes as those from preliminary simulation comparisons.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0215362","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed a method to extract density fluctuation measurements from x-ray radiographs of high-energy density (HED) instability growth and turbulence experiments. We use this information to calculate density fluctuation statistics for constraining the performance of turbulent mix models in HED systems. The density calculation combines image filtering, removal of systemic effects such as backlighter variation, calculation of transmission across multiple materials, and use of tracer materials to generate an approximate single-material density field. From the density map, we calculate both average density and a variance-like moment b (density-specific-volume covariance), which we compare to our models. We infer both quantities from a single image, which is significantly more information than the historic single scalar mix width measurements. We also develop a method of analyzing simulation outputs that incorporate both the density fluctuation metric from a turbulence model and the bulk material maps from the hydrodynamic code. This analysis helps address the question of how to initialize the simulations for best comparison to data from systems with large separations of scale in the mixing perturbation initial condition. We find that our data analysis method yields 1D average density and b curves with similar morphology and amplitudes as those from preliminary simulation comparisons.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
A simple graphics processing unit-accelerated propagation routine for laser pulses in the strong-field regime. Analyzing the effects of reflections on optical diagnostics in the main chamber and divertor of WEST (invited). Application of tunneling magnetoresistance in electromagnetic tomography system construction. Combined Raman spectroscopy and electrical transport measurements in ultra-high vacuum down to 3.7 K. Design of a novel high-speed tensile method for testing the high strain rate tensile behavior of aluminum alloys.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1