A versatile setup for hydrogen isotope permeation studies.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2024-12-01 DOI:10.1063/5.0239583
P Sand, A Manhard, U von Toussaint
{"title":"A versatile setup for hydrogen isotope permeation studies.","authors":"P Sand, A Manhard, U von Toussaint","doi":"10.1063/5.0239583","DOIUrl":null,"url":null,"abstract":"<p><p>The Testbed for Analysis of Permeation of Atoms in Samples (TAPAS) is an experimental setup for ion-driven permeation studies with a focus on investigating wall materials for nuclear fusion devices. A monoenergetic, mass-filtered high-intensity keV ion beam is focused and directed onto the permeation sample by electrostatic ion optics and decelerated to the desired ion energy by a dedicated set of apertures close to the sample. We were able to obtain ion energies as low as 170 eV/D with a D3+ ion beam with an ion flux density of the order of 1020 D/m2s on a beam-wetted area of ∼33 mm2. These conditions avoid sputtering of W targets by the ion beam and are representative of the particle flux and energy spectrum impinging on the first wall of a prospective nuclear fusion power reactor. Permeation samples can be heated up to 1000 K in an ultra-high vacuum. The design of the deceleration system, together with a high pumping speed in the loading chamber, ensures a low pressure of recycling hydrogen isotope molecules in front of the sample. In addition to ion-driven permeation, TAPAS provides a limited capability for gas-driven permeation at low pressures up to nearly 1 mbar. Permeating hydrogen isotopes are detected with a quadrupole mass spectrometer in the downstream ultra-high vacuum chamber. After a detailed description of the setup and calibration procedures for implanted particle flux, mass spectrometer, and neutral gas pressure, benchmark experiments on recrystallized, 50 μm thick tungsten foils are shown, demonstrating that diffusion-limited boundary conditions for permeation were reached.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0239583","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The Testbed for Analysis of Permeation of Atoms in Samples (TAPAS) is an experimental setup for ion-driven permeation studies with a focus on investigating wall materials for nuclear fusion devices. A monoenergetic, mass-filtered high-intensity keV ion beam is focused and directed onto the permeation sample by electrostatic ion optics and decelerated to the desired ion energy by a dedicated set of apertures close to the sample. We were able to obtain ion energies as low as 170 eV/D with a D3+ ion beam with an ion flux density of the order of 1020 D/m2s on a beam-wetted area of ∼33 mm2. These conditions avoid sputtering of W targets by the ion beam and are representative of the particle flux and energy spectrum impinging on the first wall of a prospective nuclear fusion power reactor. Permeation samples can be heated up to 1000 K in an ultra-high vacuum. The design of the deceleration system, together with a high pumping speed in the loading chamber, ensures a low pressure of recycling hydrogen isotope molecules in front of the sample. In addition to ion-driven permeation, TAPAS provides a limited capability for gas-driven permeation at low pressures up to nearly 1 mbar. Permeating hydrogen isotopes are detected with a quadrupole mass spectrometer in the downstream ultra-high vacuum chamber. After a detailed description of the setup and calibration procedures for implanted particle flux, mass spectrometer, and neutral gas pressure, benchmark experiments on recrystallized, 50 μm thick tungsten foils are shown, demonstrating that diffusion-limited boundary conditions for permeation were reached.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
Automated high-resolution 3D inspection methods for sealant applications in aerospace based on line structured light. Cryogenic front-end circuit for capacitive sensing in superconducting gravimeters. Development of a 300 kV/3 kHz nanosecond pulse generator using semiconductor opening switches. Measurement and characterization of internal delamination defects in CFRP based on line laser thermography frequency domain analysis. An efficiency improvement method for high-voltage nanosecond pulse spiral generator based on optimized voltage wave propagation process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1