The long noncoding RNA ALEX1 confers a functional phase state of ARF3 to enhance rice resistance to bacterial pathogens.

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Plant Pub Date : 2024-12-09 DOI:10.1016/j.molp.2024.12.005
Meng-Qi Lei, Rui-Rui He, Yan-Fei Zhou, Lu Yang, Zhen-Fei Zhang, Chao Yuan, Wen-Long Zhao, Yu Cheng, Jian-Ping Lian, Yu-Chan Zhang, Wen-Tao Wang, Yang Yu, Yue-Qin Chen
{"title":"The long noncoding RNA ALEX1 confers a functional phase state of ARF3 to enhance rice resistance to bacterial pathogens.","authors":"Meng-Qi Lei, Rui-Rui He, Yan-Fei Zhou, Lu Yang, Zhen-Fei Zhang, Chao Yuan, Wen-Long Zhao, Yu Cheng, Jian-Ping Lian, Yu-Chan Zhang, Wen-Tao Wang, Yang Yu, Yue-Qin Chen","doi":"10.1016/j.molp.2024.12.005","DOIUrl":null,"url":null,"abstract":"<p><p>Rice bacterial blight is a devastating disease worldwide, causing significant yield losses. Understanding how plants defend against microbial infection is critical for sustainable crop production. We previously identified a pathogen-induced long noncoding RNA (ALEX1). In this study, we show that ALEX1 localizes to the nucleus and directly binds to AUXIN RESPONSE FACTOR 3 (ARF3). We demonstrate that ARF3 forms condensates in the nucleus via its intrinsically disordered middle region (MR). Notably, ARF3 condensates takes on solid-like properties. We further revealed that ALEX1 directly binds to the MR of ARF3, regulating ARF3 condensate dynamics and promotes ARF3 homodimerization. The dispersed and dimeric form of ARF3, referred to as its functional phase state, enhances its ability to transcriptionally repress downstream target gene such as JAZ13, thereby modulating the jasmonic acid (JA) signaling pathway and strengthening pathogen resistance in rice. This study highlights the role of a long noncoding RNA in regulating protein condensation and assembly, contributing to pathogen defense in plants.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.12.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rice bacterial blight is a devastating disease worldwide, causing significant yield losses. Understanding how plants defend against microbial infection is critical for sustainable crop production. We previously identified a pathogen-induced long noncoding RNA (ALEX1). In this study, we show that ALEX1 localizes to the nucleus and directly binds to AUXIN RESPONSE FACTOR 3 (ARF3). We demonstrate that ARF3 forms condensates in the nucleus via its intrinsically disordered middle region (MR). Notably, ARF3 condensates takes on solid-like properties. We further revealed that ALEX1 directly binds to the MR of ARF3, regulating ARF3 condensate dynamics and promotes ARF3 homodimerization. The dispersed and dimeric form of ARF3, referred to as its functional phase state, enhances its ability to transcriptionally repress downstream target gene such as JAZ13, thereby modulating the jasmonic acid (JA) signaling pathway and strengthening pathogen resistance in rice. This study highlights the role of a long noncoding RNA in regulating protein condensation and assembly, contributing to pathogen defense in plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
期刊最新文献
PDLLMs: A group of tailored DNA large language models for analyzing plant genomes. The long noncoding RNA ALEX1 confers a functional phase state of ARF3 to enhance rice resistance to bacterial pathogens. Histone H4K8hib modification promotes gene expression and regulates rice immunity. Thermotolerance Through Trade-Off: Decapping WUSCHEL mRNA in Plant Stem Cells. H2O2 sulfenylates CHE to activate systemic salicylic acid synthesis and ignite systemic acquired resistance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1