A rapid and inexpensive 96-well DNA-extraction method from blood using silicon dioxide powder (Glassmilk).

IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Biology Methods and Protocols Pub Date : 2024-10-26 eCollection Date: 2024-01-01 DOI:10.1093/biomethods/bpae079
Maria Mercedes Vásquez Bonilla, Mónica Salome Guerrero-Freire, Yanua Ledesma, Juan Carlos Laglaguano, Jacobus H de Waard
{"title":"A rapid and inexpensive 96-well DNA-extraction method from blood using silicon dioxide powder (Glassmilk).","authors":"Maria Mercedes Vásquez Bonilla, Mónica Salome Guerrero-Freire, Yanua Ledesma, Juan Carlos Laglaguano, Jacobus H de Waard","doi":"10.1093/biomethods/bpae079","DOIUrl":null,"url":null,"abstract":"<p><p>We present a rapid high-throughput DNA extraction method for use with EDTA-anticoagulated blood using silicon dioxide (SiO<sub>2</sub>) powder in a guanidine-HCl solution, hereinafter referred to as \"Glassmilk.\" The method utilizes a 96-well deep-well plate, enabling DNA extraction from 96 samples in under 3 h. The method integrates cell lysis, washing, elution, and DNA storage within the same well, eliminating the need for DNA transfer. The Glassmilk extraction method is cost-effective and fast, and it avoids expensive or toxic reagents by using only basic lab equipment. The method yielded approximately 40 μg of high-quality DNA from 200 μl of blood. The DNA yield of the Glassmilk method was about 50% higher, and the purity of the DNA was comparable to those obtained using two commercial column-based extraction kits that were used for comparison. The cost per sample was around $1, with the most expensive item being the filter pipette tips, which account for about $0.80 per sample. As we show, the extracted DNA is suitable for downstream applications such as polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism analysis, and qPCR. The method can be adapted for various sample types, including biopsies, fecal samples, cultured cells, and bacteria (see \"subprotocols\" section), and can also be applied in individual Eppendorf tubes. Our protocol may be useful for basic molecular research in laboratories having limited funds.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae079"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpae079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a rapid high-throughput DNA extraction method for use with EDTA-anticoagulated blood using silicon dioxide (SiO2) powder in a guanidine-HCl solution, hereinafter referred to as "Glassmilk." The method utilizes a 96-well deep-well plate, enabling DNA extraction from 96 samples in under 3 h. The method integrates cell lysis, washing, elution, and DNA storage within the same well, eliminating the need for DNA transfer. The Glassmilk extraction method is cost-effective and fast, and it avoids expensive or toxic reagents by using only basic lab equipment. The method yielded approximately 40 μg of high-quality DNA from 200 μl of blood. The DNA yield of the Glassmilk method was about 50% higher, and the purity of the DNA was comparable to those obtained using two commercial column-based extraction kits that were used for comparison. The cost per sample was around $1, with the most expensive item being the filter pipette tips, which account for about $0.80 per sample. As we show, the extracted DNA is suitable for downstream applications such as polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism analysis, and qPCR. The method can be adapted for various sample types, including biopsies, fecal samples, cultured cells, and bacteria (see "subprotocols" section), and can also be applied in individual Eppendorf tubes. Our protocol may be useful for basic molecular research in laboratories having limited funds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
期刊最新文献
Robust RNA secondary structure prediction with a mixture of deep learning and physics-based experts. Real time-PCR a diagnostic tool for reporting copy number variation and relative gene-expression changes in pediatric B-cell acute lymphoblastic leukemia-a pilot study. A cognitive and sensory approach based on workshops using the zebrafish model promotes the discovery of life sciences in the classroom. An efficient injection protocol for Drosophila larvae. Protocol for obtaining doubled haploids in isolated microspore culture in vitro for poorly responsive genotypes of brassicaceae family.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1