{"title":"Byzantine-Robust and Communication-Efficient Personalized Federated Learning","authors":"Jiaojiao Zhang;Xuechao He;Yue Huang;Qing Ling","doi":"10.1109/TSP.2024.3514802","DOIUrl":null,"url":null,"abstract":"This paper explores constrained non-convex personalized federated learning (PFL), in which a group of workers train local models and a global model, under the coordination of a server. To address the challenges of efficient information exchange and robustness against the so-called Byzantine workers, we propose a projected stochastic gradient descent algorithm for PFL that simultaneously ensures Byzantine-robustness and communication efficiency. We implement personalized learning at the workers aided by the global model, and employ a Huber function-based robust aggregation with an adaptive threshold-selecting strategy at the server to reduce the effects of Byzantine attacks. To improve communication efficiency, we incorporate random communication that allows multiple local updates per communication round. We establish the convergence of our algorithm, showing the effects of Byzantine attacks, random communication, and stochastic gradients on the learning error. Numerical experiments demonstrate the superiority of our algorithm in neural network training compared to existing ones.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"26-39"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10791812/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores constrained non-convex personalized federated learning (PFL), in which a group of workers train local models and a global model, under the coordination of a server. To address the challenges of efficient information exchange and robustness against the so-called Byzantine workers, we propose a projected stochastic gradient descent algorithm for PFL that simultaneously ensures Byzantine-robustness and communication efficiency. We implement personalized learning at the workers aided by the global model, and employ a Huber function-based robust aggregation with an adaptive threshold-selecting strategy at the server to reduce the effects of Byzantine attacks. To improve communication efficiency, we incorporate random communication that allows multiple local updates per communication round. We establish the convergence of our algorithm, showing the effects of Byzantine attacks, random communication, and stochastic gradients on the learning error. Numerical experiments demonstrate the superiority of our algorithm in neural network training compared to existing ones.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.