High energy storage density and efficiency of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 thin films on platinized sapphire substrates

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-12-10 DOI:10.1039/D4TA05675B
Sabi William Konsago, Katarina Žiberna, Aleksander Matavž, Barnik Mandal, Sebastjan Glinšek, Geoff L. Brennecka, Hana Uršič and Barbara Malič
{"title":"High energy storage density and efficiency of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 thin films on platinized sapphire substrates","authors":"Sabi William Konsago, Katarina Žiberna, Aleksander Matavž, Barnik Mandal, Sebastjan Glinšek, Geoff L. Brennecka, Hana Uršič and Barbara Malič","doi":"10.1039/D4TA05675B","DOIUrl":null,"url":null,"abstract":"<p >Manganese-doped 0.5Ba(Zr<small><sub>0.2</sub></small>Ti<small><sub>0.8</sub></small>)O<small><sub>3</sub></small>–0.5(Ba<small><sub>0.7</sub></small>Ca<small><sub>0.3</sub></small>)TiO<small><sub>3</sub></small> (BZT–BCT) ferroelectric thin films deposited on platinized sapphire substrates by chemical solution deposition and multistep-annealed at 850 °C, are investigated. The 100 nm and 340 nm thick films are crack-free and have columnar microstructures with average lateral grain sizes of 58 nm and 92 nm, respectively. The 340 nm thick films exhibit a relative permittivity of about 820 at 1 kHz and room temperature, about 60% higher than the thinner films, which is attributed to the dielectric grain size effect. The thinner films exhibit a larger coercive field and remanent polarization of about 110 kV cm<small><sup>−1</sup></small> and 6 μC cm<small><sup>−2</sup></small> respectively, at 1 MV cm<small><sup>−1</sup></small> compared to 45 kV cm<small><sup>−1</sup></small> and 4 μC cm<small><sup>−2</sup></small> for the thicker films. The 340 nm thick films exhibit a maximum polarization of about 47 μC cm<small><sup>−2</sup></small> at 3.5 MV cm<small><sup>−1</sup></small> and slim polarization loops, resulting in high energy storage properties with 46 J cm<small><sup>−3</sup></small> of recoverable energy storage density and 89% energy storage efficiency.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 4","pages":" 2911-2919"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta05675b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta05675b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Manganese-doped 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BZT–BCT) ferroelectric thin films deposited on platinized sapphire substrates by chemical solution deposition and multistep-annealed at 850 °C, are investigated. The 100 nm and 340 nm thick films are crack-free and have columnar microstructures with average lateral grain sizes of 58 nm and 92 nm, respectively. The 340 nm thick films exhibit a relative permittivity of about 820 at 1 kHz and room temperature, about 60% higher than the thinner films, which is attributed to the dielectric grain size effect. The thinner films exhibit a larger coercive field and remanent polarization of about 110 kV cm−1 and 6 μC cm−2 respectively, at 1 MV cm−1 compared to 45 kV cm−1 and 4 μC cm−2 for the thicker films. The 340 nm thick films exhibit a maximum polarization of about 47 μC cm−2 at 3.5 MV cm−1 and slim polarization loops, resulting in high energy storage properties with 46 J cm−3 of recoverable energy storage density and 89% energy storage efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镀铂蓝宝石衬底上0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3薄膜的高能量存储密度和效率
研究了化学溶液沉积法在镀铂蓝宝石衬底上沉积掺杂锰的0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT)铁电薄膜,并在850℃下进行了多步退火。厚度为100 nm和340 nm的薄膜无裂纹,具有柱状微观结构,平均横向晶粒尺寸分别为58 nm和92 nm。在1 kHz和室温下,340 nm厚薄膜的相对介电常数约为820,比较薄薄膜高约60%,这归因于介电晶粒尺寸效应。在1 MV∙cm-1时,较薄薄膜的矫顽力场和剩余极化分别为110 kV∙cm-1和6 μC∙cm-2,而较厚薄膜的矫顽力场和剩余极化分别为45 kV∙cm-1和4 μC∙cm-2。340 nm厚膜在3.5 MV∙cm-1下的最大极化约为47 μC∙cm-2,极化环较细,具有较高的储能性能,可回收储能密度为46 J∙cm-3,储能效率为89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Potential Dependent Degradation of Spinel LiMn2O4 (LMO) and Related Structures Assessed via Manganese- and Oxygen-Sensitive Scanning Electrochemical Microscopy Electronic structure tuning to facilitate charge transfers in Z- Scheme mediated CuO/Se@WO3 aided by synchronized Cu (OH)2 for efficient overall water splitting Solving ZIB Challenges: The Dynamic Role of Water in Deep Eutectic Solvents electrolyte A paradigm shift from traditional non-contact sensors to tele-perception Novel amine-functionalized Mg-MOF CO2 adsorbents with a bi-functional adsorption-screening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1