A stable zeolite with atomically ordered and interconnected mesopore channel

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2024-12-11 DOI:10.1038/s41586-024-08206-1
Peng Lu, Jiaoyan Xu, Yiqing Sun, Rémy Guillet-Nicolas, Tom Willhammar, Mohammad Fahda, Eddy Dib, Bo Wang, Zhengxing Qin, Hongyi Xu, Jung Cho, Zhaopeng Liu, Haijun Yu, Xiaobo Yang, Qiaolin Lang, Svetlana Mintova, Xiaodong Zou, Valentin Valtchev
{"title":"A stable zeolite with atomically ordered and interconnected mesopore channel","authors":"Peng Lu, Jiaoyan Xu, Yiqing Sun, Rémy Guillet-Nicolas, Tom Willhammar, Mohammad Fahda, Eddy Dib, Bo Wang, Zhengxing Qin, Hongyi Xu, Jung Cho, Zhaopeng Liu, Haijun Yu, Xiaobo Yang, Qiaolin Lang, Svetlana Mintova, Xiaodong Zou, Valentin Valtchev","doi":"10.1038/s41586-024-08206-1","DOIUrl":null,"url":null,"abstract":"Zeolites are crystalline microporous materials constructed by corner-sharing tetrahedra (SiO4 and AlO4), with many industrial applications as ion exchangers, adsorbents and heterogeneous catalysts1–4. However, the presence of micropores impedes the use of zeolites in areas dealing with bulky substrates. Introducing extrinsic mesopores, that is, intercrystal/intracrystal mesopores, in zeolites is a solution to overcome the diffusion barrier5–8. Still, those extrinsic mesopores are generally disordered and non-uniform; moreover, acidity and crystallinity are always, to some extent, impaired9. Thus, synthesizing thermally stable zeolites with intrinsic mesopores that are of uniform size and crystallographically connected with micropores, denoted here as intrinsic mesoporous zeolite, is highly desired but still not achieved. Here we report ZMQ-1 (Zeolitic Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, no. 1), an aluminosilicate zeolite with an intersecting intrinsic meso-microporous channel system delimited by 28 × 10 × 10-rings, in which the 28-ring has a free diameter of 22.76 Å × 11.83 Å, which reaches the mesopore domain. ZMQ-1 has high thermal and hydrothermal stability with tunable framework Si/Al molar ratios. ZMQ-1 is the first aluminosilicate zeolite with an intrinsic meso-microporous channel system. The Brønsted acidity of ZMQ-1 imparts high activity and unique selectivity in the catalytic cracking of heavy oil. The position of the organic structure-directing agent (OSDA) used for ZMQ-1 synthesis was determined from three-dimensional electron diffraction (3D ED) data, which shows the unique structure-directing role of the OSDA in the formation of the intrinsic meso-microporous zeolite. This provides an incentive for preparing other stable mesopore-containing zeolites. A new aluminosilicate zeolite called ZMQ-1 is introduced that has an intrinsic meso-microporous channel system and shows high thermal and hydrothermal stability and tunable framework Si/Al molar ratios.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"636 8042","pages":"368-373"},"PeriodicalIF":50.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-08206-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08206-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Zeolites are crystalline microporous materials constructed by corner-sharing tetrahedra (SiO4 and AlO4), with many industrial applications as ion exchangers, adsorbents and heterogeneous catalysts1–4. However, the presence of micropores impedes the use of zeolites in areas dealing with bulky substrates. Introducing extrinsic mesopores, that is, intercrystal/intracrystal mesopores, in zeolites is a solution to overcome the diffusion barrier5–8. Still, those extrinsic mesopores are generally disordered and non-uniform; moreover, acidity and crystallinity are always, to some extent, impaired9. Thus, synthesizing thermally stable zeolites with intrinsic mesopores that are of uniform size and crystallographically connected with micropores, denoted here as intrinsic mesoporous zeolite, is highly desired but still not achieved. Here we report ZMQ-1 (Zeolitic Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, no. 1), an aluminosilicate zeolite with an intersecting intrinsic meso-microporous channel system delimited by 28 × 10 × 10-rings, in which the 28-ring has a free diameter of 22.76 Å × 11.83 Å, which reaches the mesopore domain. ZMQ-1 has high thermal and hydrothermal stability with tunable framework Si/Al molar ratios. ZMQ-1 is the first aluminosilicate zeolite with an intrinsic meso-microporous channel system. The Brønsted acidity of ZMQ-1 imparts high activity and unique selectivity in the catalytic cracking of heavy oil. The position of the organic structure-directing agent (OSDA) used for ZMQ-1 synthesis was determined from three-dimensional electron diffraction (3D ED) data, which shows the unique structure-directing role of the OSDA in the formation of the intrinsic meso-microporous zeolite. This provides an incentive for preparing other stable mesopore-containing zeolites. A new aluminosilicate zeolite called ZMQ-1 is introduced that has an intrinsic meso-microporous channel system and shows high thermal and hydrothermal stability and tunable framework Si/Al molar ratios.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
I create routes through trees to help stop howler monkeys being electrocuted by power lines Behind the scenes of Nature News and Views in 2024 That Christmas jumper is a marvel of complicated physics Stem cells head to the clinic: treatments for cancer, diabetes and Parkinson’s disease could soon be here Can novelty scores on papers shift the power dynamics in scientific publishing?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1